Normalized defining polynomial
\( x^{20} - 6 x^{19} + 8 x^{18} + 31 x^{17} - 178 x^{16} + 497 x^{15} - 955 x^{14} + 1330 x^{13} - 1375 x^{12} + 1075 x^{11} - 598 x^{10} + 433 x^{9} - 529 x^{8} + 612 x^{7} - 501 x^{6} + 151 x^{5} + 78 x^{4} - 59 x^{3} + 7 x^{2} + 4 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1604870732498935699462890625=5^{18}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{10} + \frac{1}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{11} + \frac{1}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{12} + \frac{1}{5} a^{7} - \frac{1}{5} a^{2}$, $\frac{1}{95} a^{18} - \frac{2}{95} a^{17} + \frac{9}{95} a^{16} - \frac{8}{95} a^{15} + \frac{4}{95} a^{14} + \frac{4}{95} a^{13} + \frac{28}{95} a^{12} - \frac{4}{95} a^{11} - \frac{18}{95} a^{10} + \frac{36}{95} a^{9} - \frac{8}{95} a^{8} + \frac{22}{95} a^{7} + \frac{2}{5} a^{6} - \frac{7}{95} a^{5} - \frac{7}{19} a^{4} + \frac{43}{95} a^{3} - \frac{8}{95} a^{2} - \frac{8}{95} a - \frac{2}{95}$, $\frac{1}{347895372587725} a^{19} - \frac{13023460089}{69579074517545} a^{18} - \frac{31672746268002}{347895372587725} a^{17} - \frac{28698870507796}{347895372587725} a^{16} + \frac{74774386761}{347895372587725} a^{15} - \frac{17648482087457}{347895372587725} a^{14} - \frac{11722307391802}{347895372587725} a^{13} - \frac{6582667427147}{347895372587725} a^{12} - \frac{152572354232117}{347895372587725} a^{11} - \frac{1770729037987}{347895372587725} a^{10} + \frac{111896678504}{13915814903509} a^{9} - \frac{1450288639268}{18310282767775} a^{8} + \frac{15766897049384}{347895372587725} a^{7} + \frac{158995511127356}{347895372587725} a^{6} - \frac{24590641609701}{69579074517545} a^{5} + \frac{60415215581271}{347895372587725} a^{4} + \frac{18474209085754}{347895372587725} a^{3} + \frac{9469752842986}{69579074517545} a^{2} + \frac{158416794421947}{347895372587725} a + \frac{20472279044596}{347895372587725}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 406208.828043 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T55):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{29})\), 10.2.8012167578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.10.11.1 | $x^{10} + 20 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $29$ | 29.10.5.1 | $x^{10} - 1682 x^{6} + 707281 x^{2} - 2481849029$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 29.10.5.1 | $x^{10} - 1682 x^{6} + 707281 x^{2} - 2481849029$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |