Normalized defining polynomial
\( x^{20} - 6 x^{19} + 17 x^{18} - 42 x^{17} + 101 x^{16} - 156 x^{15} - 6 x^{14} + 696 x^{13} - 1987 x^{12} + 3650 x^{11} - 5417 x^{10} + 6882 x^{9} - 7257 x^{8} + 6056 x^{7} - 3910 x^{6} + 1964 x^{5} - 781 x^{4} + 246 x^{3} - 59 x^{2} + 10 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1596716694120693760000000000=2^{38}\cdot 5^{10}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} + \frac{3}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{8} a$, $\frac{1}{8152} a^{18} + \frac{141}{4076} a^{17} + \frac{111}{2038} a^{16} - \frac{65}{2038} a^{15} + \frac{65}{4076} a^{14} + \frac{37}{4076} a^{13} + \frac{85}{4076} a^{12} + \frac{925}{4076} a^{11} - \frac{1153}{8152} a^{10} - \frac{589}{4076} a^{9} + \frac{315}{4076} a^{8} + \frac{891}{4076} a^{7} + \frac{1767}{4076} a^{6} - \frac{368}{1019} a^{5} - \frac{1383}{4076} a^{4} - \frac{899}{4076} a^{3} - \frac{1203}{8152} a^{2} + \frac{613}{2038} a - \frac{521}{2038}$, $\frac{1}{432056} a^{19} - \frac{1}{108014} a^{18} - \frac{5821}{432056} a^{17} + \frac{18473}{432056} a^{16} - \frac{31}{1019} a^{15} - \frac{2855}{54007} a^{14} - \frac{112}{1019} a^{13} + \frac{7185}{216028} a^{12} + \frac{7779}{432056} a^{11} - \frac{36453}{216028} a^{10} + \frac{89921}{432056} a^{9} - \frac{20453}{432056} a^{8} + \frac{56717}{216028} a^{7} + \frac{52597}{216028} a^{6} - \frac{45055}{216028} a^{5} + \frac{13533}{216028} a^{4} - \frac{22969}{432056} a^{3} + \frac{87659}{216028} a^{2} - \frac{88899}{432056} a - \frac{53079}{432056}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1102675.70668 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1440 |
| The 13 conjugacy class representatives for t20n201 |
| Character table for t20n201 |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.2.39958937600000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.8.16.21 | $x^{8} + 12 x^{7} + 20 x^{5} + 16 x^{4} + 40 x + 20$ | $4$ | $2$ | $16$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| 2.8.16.21 | $x^{8} + 12 x^{7} + 20 x^{5} + 16 x^{4} + 40 x + 20$ | $4$ | $2$ | $16$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |