Normalized defining polynomial
\( x^{20} + 56 x^{18} - 40 x^{17} + 418 x^{16} + 256 x^{15} - 12528 x^{14} + 7152 x^{13} - 10256 x^{12} + 168320 x^{11} + 1858096 x^{10} + 4196096 x^{9} - 3159072 x^{8} - 56532608 x^{7} - 101853504 x^{6} + 125400896 x^{5} + 1020137072 x^{4} + 2614386304 x^{3} + 3601583424 x^{2} + 3332373376 x + 1112892896 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1573698888766283323386134528000000000000000=2^{30}\cdot 5^{15}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{12} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{13} - \frac{1}{4} a^{5}$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{10} - \frac{1}{8} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{16} a^{11} - \frac{1}{8} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{64} a^{16} - \frac{1}{4}$, $\frac{1}{64} a^{17} - \frac{1}{4} a$, $\frac{1}{64} a^{18} - \frac{1}{4} a^{2}$, $\frac{1}{30760250486694715979351939419138653150292494717370793907881229668406380096} a^{19} + \frac{59690462879398755333188570558618456596796930490363048411149840969061027}{15380125243347357989675969709569326575146247358685396953940614834203190048} a^{18} - \frac{76772992028954445523644696612184445434014879141001110958385450992139515}{15380125243347357989675969709569326575146247358685396953940614834203190048} a^{17} - \frac{2339407907750756934021137185967249620143424023200253629595901903279597}{480628913854604937177374053424041455473320229958918654810644213568849689} a^{16} - \frac{220623669122032006584143987467499892847116050438098284137765569990032793}{15380125243347357989675969709569326575146247358685396953940614834203190048} a^{15} - \frac{58971397885450532488543567500176130303539699237888639229264463348317753}{7690062621673678994837984854784663287573123679342698476970307417101595024} a^{14} + \frac{21435783463020584281238390554964003425196624132310628997888951745578975}{3845031310836839497418992427392331643786561839671349238485153708550797512} a^{13} - \frac{66138113200502790661660015395303644097255163216474667570740247607763903}{3845031310836839497418992427392331643786561839671349238485153708550797512} a^{12} + \frac{99610751124122641474050263087001283394897901862610719510090827160335923}{7690062621673678994837984854784663287573123679342698476970307417101595024} a^{11} + \frac{195072110904679849562214912324162440506569582416763247477298975266966917}{3845031310836839497418992427392331643786561839671349238485153708550797512} a^{10} + \frac{91783971022764375773685493809946765888412919955661671766826525686919727}{1922515655418419748709496213696165821893280919835674619242576854275398756} a^{9} + \frac{50329333340755788776768116632325829836424557511845676142619283270587687}{3845031310836839497418992427392331643786561839671349238485153708550797512} a^{8} - \frac{241975726714060257110608953235985845490005679632563526817988235496723779}{3845031310836839497418992427392331643786561839671349238485153708550797512} a^{7} + \frac{13535340422115488770867980427323586072364550580237541701328291589223871}{961257827709209874354748106848082910946640459917837309621288427137699378} a^{6} + \frac{66993029097943869965149450310077802882877094486601680772304022000260949}{480628913854604937177374053424041455473320229958918654810644213568849689} a^{5} + \frac{49147464344761360280151525153994114575322536342078818230543229529759617}{480628913854604937177374053424041455473320229958918654810644213568849689} a^{4} - \frac{92769089341163527343405192838602914692011643300666011386758062910976912}{480628913854604937177374053424041455473320229958918654810644213568849689} a^{3} - \frac{260819681731247191686477861333842058384806340124820513432377460016442441}{961257827709209874354748106848082910946640459917837309621288427137699378} a^{2} + \frac{377083684138895411614964437187872154463684128682255682166557246307260293}{961257827709209874354748106848082910946640459917837309621288427137699378} a + \frac{425361722181693809138190908129695924163167313293661388620012920208189353}{961257827709209874354748106848082910946640459917837309621288427137699378}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3870942508450 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.753625.1, 10.6.17531772991120000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| 6029 | Data not computed | ||||||