Normalized defining polynomial
\( x^{20} - 6 x^{19} + 18 x^{18} - 44 x^{17} + 75 x^{16} - 112 x^{15} + 220 x^{14} - 304 x^{13} - 119 x^{12} + 2394 x^{11} - 5808 x^{10} + 9012 x^{9} - 12376 x^{8} + 11000 x^{7} - 16072 x^{6} + 18682 x^{5} - 19333 x^{4} + 16048 x^{3} - 5168 x^{2} - 922 x + 593 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(154181708612560135336755200000=2^{30}\cdot 5^{5}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3391314241051568933966668795349337128249} a^{19} - \frac{125121593770501294804242026601502622535}{3391314241051568933966668795349337128249} a^{18} - \frac{75728729346052511704900664691118361583}{3391314241051568933966668795349337128249} a^{17} + \frac{1580981457020432232746553716547435387042}{3391314241051568933966668795349337128249} a^{16} - \frac{1482342390016913624177082251927713718269}{3391314241051568933966668795349337128249} a^{15} + \frac{1673823162503357971953747485915462773832}{3391314241051568933966668795349337128249} a^{14} + \frac{341062193085952486838003207000546753967}{3391314241051568933966668795349337128249} a^{13} - \frac{377370568420514920179625246050163758927}{3391314241051568933966668795349337128249} a^{12} - \frac{988224708257869920744813203763552604520}{3391314241051568933966668795349337128249} a^{11} + \frac{1282131523854432204754481905076681040725}{3391314241051568933966668795349337128249} a^{10} - \frac{449143663274224370856328356313601254374}{3391314241051568933966668795349337128249} a^{9} + \frac{1523197317841369016264963733468959447470}{3391314241051568933966668795349337128249} a^{8} - \frac{1657898478924858429335274040912548247504}{3391314241051568933966668795349337128249} a^{7} - \frac{30379281346289072781957663408184959410}{3391314241051568933966668795349337128249} a^{6} + \frac{1130300612501273554929538727079987115264}{3391314241051568933966668795349337128249} a^{5} + \frac{765573687777513417588685065545445320}{38104654393837853190636728037633001441} a^{4} - \frac{1504933159847295263700091776160906352252}{3391314241051568933966668795349337128249} a^{3} - \frac{1492488391021823948404631637220210751807}{3391314241051568933966668795349337128249} a^{2} - \frac{1374582956547622208642577381304722152214}{3391314241051568933966668795349337128249} a + \frac{376292010819993694483371255426848491872}{3391314241051568933966668795349337128249}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4631387.3319 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n427 are not computed |
| Character table for t20n427 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.219503494144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.0.1 | $x^{10} + x^{2} - x + 3$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |