Normalized defining polynomial
\( x^{20} - 9 x^{18} + 20 x^{16} - 2 x^{14} - 91 x^{12} + 205 x^{10} - 365 x^{8} + 175 x^{6} + 375 x^{4} - 375 x^{2} + 125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1520519664538880000000000000=2^{20}\cdot 5^{13}\cdot 1039^{2}\cdot 1049^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 1039, 1049$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{2}{5} a^{6} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} - \frac{2}{5} a^{7} - \frac{1}{5} a^{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5}$, $\frac{1}{25} a^{16} + \frac{1}{25} a^{14} - \frac{7}{25} a^{10} - \frac{11}{25} a^{8} + \frac{1}{5} a^{6} - \frac{2}{5} a^{4}$, $\frac{1}{25} a^{17} + \frac{1}{25} a^{15} - \frac{7}{25} a^{11} - \frac{11}{25} a^{9} + \frac{1}{5} a^{7} - \frac{2}{5} a^{5}$, $\frac{1}{360360486275} a^{18} - \frac{5266594049}{360360486275} a^{16} - \frac{6656251873}{72072097255} a^{14} - \frac{2290370857}{360360486275} a^{12} + \frac{136934685279}{360360486275} a^{10} + \frac{14248639602}{72072097255} a^{8} - \frac{3210196944}{14414419451} a^{6} + \frac{35107053117}{72072097255} a^{4} + \frac{945748962}{14414419451} a^{2} - \frac{1718095904}{14414419451}$, $\frac{1}{360360486275} a^{19} - \frac{5266594049}{360360486275} a^{17} - \frac{6656251873}{72072097255} a^{15} - \frac{2290370857}{360360486275} a^{13} + \frac{136934685279}{360360486275} a^{11} + \frac{14248639602}{72072097255} a^{9} - \frac{3210196944}{14414419451} a^{7} + \frac{35107053117}{72072097255} a^{5} + \frac{945748962}{14414419451} a^{3} - \frac{1718095904}{14414419451} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 364339.705328 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 378 conjugacy class representatives for t20n1039 are not computed |
| Character table for t20n1039 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.4.3405971875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $16{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 1039 | Data not computed | ||||||
| 1049 | Data not computed | ||||||