Normalized defining polynomial
\( x^{20} - 8 x^{19} + 14 x^{18} + 20 x^{17} + 73 x^{16} - 739 x^{15} + 722 x^{14} + 2905 x^{13} - 4942 x^{12} - 5846 x^{11} + 13377 x^{10} + 9397 x^{9} - 27547 x^{8} - 2709 x^{7} + 30236 x^{6} - 6048 x^{5} - 22095 x^{4} + 13743 x^{3} + 2268 x^{2} - 3888 x + 729 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(151842021780313265349792921973921=17^{6}\cdot 97^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} - \frac{4}{9} a^{14} + \frac{2}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{2}{9} a^{10} - \frac{2}{9} a^{9} - \frac{1}{9} a^{8} + \frac{4}{9} a^{7} + \frac{1}{3} a^{6} + \frac{1}{9} a^{5} + \frac{2}{9} a^{4} - \frac{4}{9} a^{2}$, $\frac{1}{27} a^{17} + \frac{1}{27} a^{16} - \frac{4}{27} a^{15} + \frac{11}{27} a^{14} + \frac{10}{27} a^{13} - \frac{1}{27} a^{12} + \frac{11}{27} a^{11} + \frac{7}{27} a^{10} + \frac{8}{27} a^{9} + \frac{4}{27} a^{8} - \frac{2}{9} a^{7} + \frac{1}{27} a^{6} + \frac{2}{27} a^{5} + \frac{1}{3} a^{4} - \frac{4}{27} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{154629} a^{18} - \frac{902}{154629} a^{17} - \frac{4426}{154629} a^{16} + \frac{11282}{154629} a^{15} + \frac{8203}{154629} a^{14} + \frac{75029}{154629} a^{13} + \frac{75047}{154629} a^{12} + \frac{41788}{154629} a^{11} - \frac{32602}{154629} a^{10} + \frac{11536}{154629} a^{9} + \frac{2506}{17181} a^{8} - \frac{49535}{154629} a^{7} + \frac{74537}{154629} a^{6} - \frac{15857}{51543} a^{5} + \frac{42206}{154629} a^{4} + \frac{15601}{51543} a^{3} - \frac{1813}{5727} a^{2} - \frac{2453}{5727} a + \frac{507}{1909}$, $\frac{1}{3651783483105443446859017002648177} a^{19} - \frac{6784900510733596936088502716}{3651783483105443446859017002648177} a^{18} + \frac{55096181106123514641603230136386}{3651783483105443446859017002648177} a^{17} + \frac{153909541981719529856536208742905}{3651783483105443446859017002648177} a^{16} - \frac{553091340463287868634050223063285}{3651783483105443446859017002648177} a^{15} - \frac{192054243620898130430592646836961}{3651783483105443446859017002648177} a^{14} - \frac{1343789738611837484027541578597938}{3651783483105443446859017002648177} a^{13} - \frac{23163084725031961240148516242700}{3651783483105443446859017002648177} a^{12} + \frac{1732374059706736318269464327654333}{3651783483105443446859017002648177} a^{11} - \frac{737258680466110166082685030617608}{3651783483105443446859017002648177} a^{10} + \frac{36398801487073004654816621993860}{135251240115016423957741370468451} a^{9} - \frac{1437209412741204591526921299961304}{3651783483105443446859017002648177} a^{8} - \frac{314575091604688680348870222104761}{3651783483105443446859017002648177} a^{7} - \frac{12745854758178002041166037068092}{52924398305875991983464014531133} a^{6} + \frac{326759259212274918525368379578915}{3651783483105443446859017002648177} a^{5} - \frac{471326726830649517805885117955066}{1217261161035147815619672334216059} a^{4} - \frac{32957466936563707370677085447302}{135251240115016423957741370468451} a^{3} + \frac{5774425661366244978339761034170}{45083746705005474652580456822817} a^{2} + \frac{8622104606065107997514073443297}{45083746705005474652580456822817} a - \frac{4769960406652795021779054252065}{15027915568335158217526818940939}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 167959203.272 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n412 are not computed |
| Character table for t20n412 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.12322419477534161.1, 10.6.127035252345713.2, 10.2.2508125275297.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||