Normalized defining polynomial
\( x^{20} + 29 x^{18} + 233 x^{16} - 329 x^{14} - 11818 x^{12} - 41203 x^{10} + 19869 x^{8} + 236114 x^{6} + 132013 x^{4} + 15827 x^{2} + 343 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1486244560113347729221539626477165568=2^{10}\cdot 3^{10}\cdot 7^{3}\cdot 19^{10}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{35} a^{14} + \frac{1}{7} a^{12} - \frac{6}{35} a^{10} - \frac{3}{35} a^{8} - \frac{1}{5} a^{6} - \frac{3}{7} a^{4} + \frac{6}{35} a^{2} - \frac{2}{5}$, $\frac{1}{70} a^{15} - \frac{1}{70} a^{14} + \frac{1}{14} a^{13} + \frac{3}{7} a^{12} + \frac{29}{70} a^{11} - \frac{29}{70} a^{10} - \frac{3}{70} a^{9} + \frac{3}{70} a^{8} - \frac{1}{10} a^{7} - \frac{2}{5} a^{6} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{29}{70} a^{3} - \frac{3}{35} a^{2} + \frac{3}{10} a - \frac{3}{10}$, $\frac{1}{3010} a^{16} + \frac{8}{1505} a^{14} - \frac{1}{2} a^{13} - \frac{133}{430} a^{12} + \frac{88}{1505} a^{10} + \frac{45}{301} a^{8} - \frac{1}{2} a^{7} - \frac{606}{1505} a^{6} + \frac{681}{3010} a^{4} - \frac{1}{2} a^{3} - \frac{11}{70} a^{2} - \frac{137}{430}$, $\frac{1}{3010} a^{17} + \frac{8}{1505} a^{15} - \frac{1}{70} a^{14} - \frac{133}{430} a^{13} + \frac{3}{7} a^{12} + \frac{88}{1505} a^{11} + \frac{3}{35} a^{10} + \frac{45}{301} a^{9} + \frac{3}{70} a^{8} - \frac{606}{1505} a^{7} - \frac{2}{5} a^{6} + \frac{681}{3010} a^{5} + \frac{3}{14} a^{4} - \frac{11}{70} a^{3} - \frac{3}{35} a^{2} - \frac{137}{430} a + \frac{1}{5}$, $\frac{1}{20216880866090090} a^{18} - \frac{1535483632903}{10108440433045045} a^{16} + \frac{2301804453453}{235080010070815} a^{14} - \frac{1}{2} a^{13} - \frac{135755499628698}{1444062919006435} a^{12} - \frac{1}{2} a^{11} - \frac{770274391567091}{1555144682006930} a^{10} - \frac{1486311770585001}{4043376173218018} a^{8} - \frac{1}{2} a^{7} - \frac{2953305470433567}{20216880866090090} a^{6} - \frac{1}{2} a^{5} + \frac{665961869124515}{4043376173218018} a^{4} - \frac{1}{2} a^{3} - \frac{1175471710806781}{2888125838012870} a^{2} - \frac{1}{2} a + \frac{139933587156721}{412589405430410}$, $\frac{1}{20216880866090090} a^{19} - \frac{1535483632903}{10108440433045045} a^{17} - \frac{2112962809403}{470160020141630} a^{15} - \frac{477805701972601}{2888125838012870} a^{13} - \frac{1}{2} a^{12} + \frac{70298032518484}{777572341003465} a^{11} - \frac{1}{2} a^{10} - \frac{3282560550760572}{10108440433045045} a^{9} - \frac{465808691912279}{10108440433045045} a^{7} - \frac{1}{2} a^{6} - \frac{489288466080633}{4043376173218018} a^{5} - \frac{1}{2} a^{4} + \frac{10518782470704}{1444062919006435} a^{3} - \frac{1}{2} a^{2} + \frac{8078382763799}{206294702715205} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21073818520.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{57}) \), 5.5.667489.1, 10.10.2057065406163657.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.14 | $x^{10} + 5 x^{8} - 50 x^{6} - 58 x^{4} + 49 x^{2} + 21$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |