Normalized defining polynomial
\( x^{20} - 5 x^{18} - 129 x^{16} - 620 x^{14} - 1509 x^{12} - 2355 x^{10} - 864 x^{8} - 410 x^{6} + 1401 x^{4} + 2290 x^{2} + 1805 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1470391355634309152000000000000000=2^{20}\cdot 5^{15}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} + \frac{3}{11} a^{8} - \frac{3}{11} a^{6} - \frac{4}{11} a^{4} + \frac{1}{11} a^{2} + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{3}{11} a^{9} - \frac{3}{11} a^{7} - \frac{4}{11} a^{5} + \frac{1}{11} a^{3} + \frac{1}{11} a$, $\frac{1}{33} a^{12} + \frac{10}{33} a^{8} + \frac{16}{33} a^{6} + \frac{2}{33} a^{4} + \frac{3}{11} a^{2} + \frac{8}{33}$, $\frac{1}{33} a^{13} + \frac{10}{33} a^{9} + \frac{16}{33} a^{7} + \frac{2}{33} a^{5} + \frac{3}{11} a^{3} + \frac{8}{33} a$, $\frac{1}{3333} a^{14} - \frac{2}{1111} a^{12} + \frac{5}{303} a^{10} + \frac{58}{3333} a^{8} - \frac{361}{3333} a^{6} + \frac{445}{1111} a^{4} - \frac{1288}{3333} a^{2} - \frac{430}{1111}$, $\frac{1}{3333} a^{15} - \frac{2}{1111} a^{13} + \frac{5}{303} a^{11} + \frac{58}{3333} a^{9} - \frac{361}{3333} a^{7} + \frac{445}{1111} a^{5} - \frac{1288}{3333} a^{3} - \frac{430}{1111} a$, $\frac{1}{9999} a^{16} - \frac{1}{9999} a^{14} + \frac{14}{1111} a^{12} + \frac{10}{3333} a^{10} + \frac{1121}{3333} a^{8} + \frac{685}{3333} a^{6} + \frac{15}{1111} a^{4} - \frac{3791}{9999} a^{2} - \frac{2612}{9999}$, $\frac{1}{189981} a^{17} - \frac{25}{189981} a^{15} - \frac{172}{21109} a^{13} + \frac{1994}{63327} a^{11} - \frac{9376}{21109} a^{9} + \frac{1090}{21109} a^{7} - \frac{8292}{21109} a^{5} - \frac{11966}{189981} a^{3} + \frac{2825}{17271} a$, $\frac{1}{2897400231} a^{18} + \frac{2855}{87800007} a^{16} - \frac{136144}{2897400231} a^{14} - \frac{5020732}{965800077} a^{12} - \frac{23152952}{965800077} a^{10} - \frac{283961686}{965800077} a^{8} - \frac{466700387}{965800077} a^{6} - \frac{1330324079}{2897400231} a^{4} + \frac{1368823793}{2897400231} a^{2} + \frac{55376971}{152494749}$, $\frac{1}{2897400231} a^{19} + \frac{301}{321933359} a^{17} + \frac{412892}{2897400231} a^{15} - \frac{4286582}{321933359} a^{13} + \frac{8636505}{321933359} a^{11} - \frac{436227670}{965800077} a^{9} - \frac{117281702}{321933359} a^{7} - \frac{334464281}{2897400231} a^{5} + \frac{1015519127}{2897400231} a^{3} - \frac{163174490}{2897400231} a$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 354914655.78466165 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 5.1.1830125.1, 10.2.16746787578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.10.8.1 | $x^{10} + 220 x^{5} + 41503$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.1 | $x^{10} + 220 x^{5} + 41503$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |