Normalized defining polynomial
\( x^{20} - 10 x^{19} + 54 x^{18} - 201 x^{17} + 570 x^{16} - 1296 x^{15} + 2430 x^{14} - 3816 x^{13} + 5037 x^{12} - 5548 x^{11} + 4954 x^{10} - 3315 x^{9} + 1182 x^{8} + 654 x^{7} - 1625 x^{6} + 1665 x^{5} - 1149 x^{4} + 563 x^{3} - 183 x^{2} + 33 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14701068513065801441443661=13^{4}\cdot 167^{2}\cdot 347^{4}\cdot 1272989\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 167, 347, 1272989$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{1613} a^{18} - \frac{9}{1613} a^{17} + \frac{457}{1613} a^{16} - \frac{226}{1613} a^{15} - \frac{93}{1613} a^{14} + \frac{666}{1613} a^{13} + \frac{266}{1613} a^{12} - \frac{142}{1613} a^{11} - \frac{36}{1613} a^{10} + \frac{432}{1613} a^{9} + \frac{232}{1613} a^{8} + \frac{697}{1613} a^{7} + \frac{683}{1613} a^{6} - \frac{226}{1613} a^{5} + \frac{496}{1613} a^{4} - \frac{623}{1613} a^{3} - \frac{658}{1613} a^{2} - \frac{304}{1613} a - \frac{599}{1613}$, $\frac{1}{1613} a^{19} + \frac{376}{1613} a^{17} + \frac{661}{1613} a^{16} - \frac{514}{1613} a^{15} - \frac{171}{1613} a^{14} - \frac{192}{1613} a^{13} + \frac{639}{1613} a^{12} + \frac{299}{1613} a^{11} + \frac{108}{1613} a^{10} - \frac{719}{1613} a^{9} - \frac{441}{1613} a^{8} + \frac{504}{1613} a^{7} - \frac{531}{1613} a^{6} + \frac{75}{1613} a^{5} + \frac{615}{1613} a^{4} + \frac{187}{1613} a^{3} + \frac{226}{1613} a^{2} - \frac{109}{1613} a - \frac{552}{1613}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34303.2919413 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3932160 |
| The 506 conjugacy class representatives for t20n1015 are not computed |
| Character table for t20n1015 is not computed |
Intermediate fields
| 5.3.4511.1, 10.4.3398303207.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $167$ | 167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 347 | Data not computed | ||||||
| 1272989 | Data not computed | ||||||