Normalized defining polynomial
\( x^{20} - x^{19} - 4 x^{18} - 13 x^{17} - 25 x^{16} - 41 x^{15} - 86 x^{14} - 178 x^{13} - 104 x^{12} - 50 x^{11} + 360 x^{10} + 55 x^{9} + 350 x^{8} - 405 x^{7} + 410 x^{6} - 350 x^{5} + 325 x^{4} - 400 x^{3} + 250 x^{2} - 150 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1465621300755332525247833251953125=5^{15}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7}$, $\frac{1}{88610073602666883090655} a^{19} - \frac{5298855387455964471772}{88610073602666883090655} a^{18} - \frac{1301604159752705383807}{88610073602666883090655} a^{17} + \frac{4588177667907076564691}{88610073602666883090655} a^{16} + \frac{7389022386996521693818}{88610073602666883090655} a^{15} - \frac{8527764628336523084902}{88610073602666883090655} a^{14} + \frac{37415048068239045557536}{88610073602666883090655} a^{13} - \frac{32165663489302687618007}{88610073602666883090655} a^{12} - \frac{5619764817304820467771}{88610073602666883090655} a^{11} - \frac{159938755322229398122}{1363231901579490509087} a^{10} - \frac{40637933672555936229088}{88610073602666883090655} a^{9} - \frac{1386778067373797499785}{17722014720533376618131} a^{8} + \frac{15507650439716640778142}{88610073602666883090655} a^{7} - \frac{43721247267371190898259}{88610073602666883090655} a^{6} - \frac{63297842280065172591}{17722014720533376618131} a^{5} - \frac{148381855844102773604}{17722014720533376618131} a^{4} + \frac{8171972482900694564963}{17722014720533376618131} a^{3} + \frac{7877501899831481999210}{17722014720533376618131} a^{2} - \frac{5772568470403846628015}{17722014720533376618131} a + \frac{5729660743470338103202}{17722014720533376618131}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 505791161.083 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.753625.1, 10.6.17120872061640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 6029 | Data not computed | ||||||