Normalized defining polynomial
\( x^{20} - 2 x^{19} + 8 x^{18} - 2 x^{17} + 58 x^{16} - 80 x^{15} + 359 x^{14} - 48 x^{13} + 432 x^{12} + 946 x^{11} + 243 x^{10} + 1166 x^{9} + 1489 x^{8} + 2412 x^{7} - 694 x^{6} - 184 x^{5} + 727 x^{4} - 1200 x^{3} + 171 x^{2} - 126 x - 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14609322487882432594514132598784=2^{20}\cdot 11^{18}\cdot 1583^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{43} a^{17} - \frac{11}{43} a^{16} + \frac{1}{43} a^{15} - \frac{5}{43} a^{14} - \frac{14}{43} a^{13} + \frac{18}{43} a^{12} - \frac{1}{43} a^{11} + \frac{17}{43} a^{10} + \frac{16}{43} a^{9} - \frac{12}{43} a^{8} + \frac{5}{43} a^{7} + \frac{1}{43} a^{6} - \frac{8}{43} a^{5} + \frac{18}{43} a^{4} - \frac{7}{43} a^{3} - \frac{16}{43} a^{2} - \frac{3}{43} a$, $\frac{1}{43} a^{18} + \frac{9}{43} a^{16} + \frac{6}{43} a^{15} + \frac{17}{43} a^{14} - \frac{7}{43} a^{13} - \frac{18}{43} a^{12} + \frac{6}{43} a^{11} - \frac{12}{43} a^{10} - \frac{8}{43} a^{9} + \frac{2}{43} a^{8} + \frac{13}{43} a^{7} + \frac{3}{43} a^{6} + \frac{16}{43} a^{5} + \frac{19}{43} a^{4} - \frac{7}{43} a^{3} - \frac{7}{43} a^{2} + \frac{10}{43} a$, $\frac{1}{5332332661108526204751739412908099} a^{19} + \frac{38973931482359835289221632485087}{5332332661108526204751739412908099} a^{18} - \frac{53259252396136976968318726863844}{5332332661108526204751739412908099} a^{17} + \frac{2410567701248705404036825250142288}{5332332661108526204751739412908099} a^{16} - \frac{2401560814180086316124175461528464}{5332332661108526204751739412908099} a^{15} - \frac{18330205306759057121605461030136}{231840550482979400206597365778613} a^{14} + \frac{2061241099884327667868802325174618}{5332332661108526204751739412908099} a^{13} - \frac{862577036885857284663539040056697}{5332332661108526204751739412908099} a^{12} - \frac{1943654560708147119292773092133838}{5332332661108526204751739412908099} a^{11} - \frac{853819680919358385030838941936318}{5332332661108526204751739412908099} a^{10} - \frac{1995925215855689302180656321065119}{5332332661108526204751739412908099} a^{9} + \frac{2368571628946009915877402808664756}{5332332661108526204751739412908099} a^{8} + \frac{1952127607027728280839327534470526}{5332332661108526204751739412908099} a^{7} - \frac{1325331594044273900354739892782222}{5332332661108526204751739412908099} a^{6} + \frac{1113932872330729472184209342399309}{5332332661108526204751739412908099} a^{5} - \frac{965336789997644313474118786900522}{5332332661108526204751739412908099} a^{4} + \frac{1339693673001625412394842115429678}{5332332661108526204751739412908099} a^{3} - \frac{14941536771957541487067364611271}{231840550482979400206597365778613} a^{2} - \frac{401698271087789633678158837745523}{5332332661108526204751739412908099} a + \frac{7430417449173910283420484241414}{124007736304849446622133474718793}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44707610.3959 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 40 conjugacy class representatives for t20n262 |
| Character table for t20n262 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1583 | Data not computed | ||||||