Normalized defining polynomial
\( x^{20} - 5 x^{18} - 10 x^{17} - 120 x^{16} - 110 x^{15} - 710 x^{14} - 550 x^{13} - 2055 x^{12} - 1630 x^{11} - 2869 x^{10} - 2570 x^{9} - 1100 x^{8} - 1720 x^{7} + 1070 x^{6} - 38 x^{5} + 410 x^{4} - 140 x^{3} + 10 x^{2} - 20 x + 6 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14315153843200000000000000000000=2^{28}\cdot 5^{20}\cdot 7^{8}\cdot 97\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{435} a^{18} - \frac{88}{435} a^{17} + \frac{133}{435} a^{16} - \frac{106}{435} a^{15} - \frac{10}{29} a^{14} - \frac{214}{435} a^{13} + \frac{182}{435} a^{12} - \frac{122}{435} a^{11} - \frac{47}{145} a^{10} - \frac{4}{87} a^{9} - \frac{68}{435} a^{8} - \frac{196}{435} a^{7} + \frac{46}{435} a^{6} - \frac{82}{435} a^{5} - \frac{23}{87} a^{4} - \frac{7}{145} a^{3} - \frac{4}{145} a^{2} + \frac{127}{435} a + \frac{22}{145}$, $\frac{1}{571049645122173115250041365} a^{19} + \frac{96703715635035647481593}{114209929024434623050008273} a^{18} - \frac{262150798688776430643961726}{571049645122173115250041365} a^{17} + \frac{121429349544806955915240238}{571049645122173115250041365} a^{16} + \frac{231418349795252860850494897}{571049645122173115250041365} a^{15} - \frac{257839990860057435363378034}{571049645122173115250041365} a^{14} + \frac{8337921192575876985187456}{38069976341478207683336091} a^{13} - \frac{8255218455394442068201462}{43926895778628701173080105} a^{12} - \frac{123602198700140649924573412}{571049645122173115250041365} a^{11} + \frac{12755790016164430314663577}{571049645122173115250041365} a^{10} - \frac{19220710723964250125672012}{63449960569130346138893485} a^{9} - \frac{5794900513953885033284908}{114209929024434623050008273} a^{8} - \frac{103405767177550834454051452}{571049645122173115250041365} a^{7} + \frac{158196672556652311641465166}{571049645122173115250041365} a^{6} + \frac{3898105605820741396912603}{190349881707391038416680455} a^{5} - \frac{238369526977185885648338441}{571049645122173115250041365} a^{4} + \frac{2766079045564892073107514}{12689992113826069227778697} a^{3} - \frac{14310735341968714777743164}{571049645122173115250041365} a^{2} - \frac{135721378590498606338095258}{571049645122173115250041365} a + \frac{74504048896704430291330366}{190349881707391038416680455}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 570984686.992 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 655360 |
| The 331 conjugacy class representatives for t20n946 are not computed |
| Character table for t20n946 is not computed |
Intermediate fields
| 5.5.2450000.1, 10.4.384160000000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.2 | $x^{10} - 2 x^{8} - 2 x^{5} - 6$ | $10$ | $1$ | $14$ | $((C_2^4 : C_5):C_4)\times C_2$ | $[6/5, 6/5, 6/5, 6/5, 2]_{5}^{4}$ |
| 2.10.14.2 | $x^{10} - 2 x^{8} - 2 x^{5} - 6$ | $10$ | $1$ | $14$ | $((C_2^4 : C_5):C_4)\times C_2$ | $[6/5, 6/5, 6/5, 6/5, 2]_{5}^{4}$ | |
| $5$ | 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |
| 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 5.10.10.10 | $x^{10} + 10 x^{8} + 5 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 2$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| 7 | Data not computed | ||||||
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |