Normalized defining polynomial
\( x^{20} - 6 x^{19} + 23 x^{18} - 54 x^{17} + 92 x^{16} - 80 x^{15} - 84 x^{14} + 818 x^{13} - 2963 x^{12} + 7528 x^{11} - 12325 x^{10} + 9438 x^{9} + 12388 x^{8} - 51286 x^{7} + 85532 x^{6} - 86716 x^{5} + 52301 x^{4} - 7376 x^{3} - 12029 x^{2} + 7832 x - 2536 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14242101261647179649923801939968=2^{30}\cdot 3^{3}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{4}$, $\frac{1}{10} a^{17} - \frac{1}{5} a^{16} - \frac{1}{5} a^{15} - \frac{1}{10} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{8} + \frac{2}{5} a^{6} + \frac{3}{10} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{3}{10} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{50} a^{18} - \frac{11}{50} a^{16} + \frac{1}{10} a^{15} - \frac{2}{25} a^{14} + \frac{1}{50} a^{13} + \frac{4}{25} a^{12} + \frac{7}{50} a^{11} - \frac{9}{25} a^{10} + \frac{7}{50} a^{9} + \frac{2}{25} a^{8} - \frac{1}{50} a^{7} + \frac{21}{50} a^{6} - \frac{1}{50} a^{5} - \frac{13}{50} a^{4} - \frac{1}{5} a^{3} + \frac{4}{25} a^{2} + \frac{6}{25} a - \frac{2}{25}$, $\frac{1}{7371200959382720653795192745909469250} a^{19} - \frac{18138572910406577618383395135595594}{3685600479691360326897596372954734625} a^{18} - \frac{108406805114031969831246070175919843}{3685600479691360326897596372954734625} a^{17} - \frac{1222513788975381207837623105360439327}{7371200959382720653795192745909469250} a^{16} - \frac{53166355098355864446763943603157591}{216800028217138842758682139585572625} a^{15} - \frac{405143732344299521908471978813423347}{7371200959382720653795192745909469250} a^{14} + \frac{91241516871868413136796485965314152}{737120095938272065379519274590946925} a^{13} - \frac{110756515766814016189950915193992436}{3685600479691360326897596372954734625} a^{12} - \frac{892986057112182711232475373012547392}{3685600479691360326897596372954734625} a^{11} - \frac{745797615708370764970357158989382067}{3685600479691360326897596372954734625} a^{10} + \frac{1461599376828036104685597662501169794}{3685600479691360326897596372954734625} a^{9} - \frac{912004669057510375249109925645876964}{3685600479691360326897596372954734625} a^{8} + \frac{565672391422283327719636307005735459}{7371200959382720653795192745909469250} a^{7} - \frac{280203604701427048962901428004840137}{3685600479691360326897596372954734625} a^{6} - \frac{66325063702940317798440286093802343}{147424019187654413075903854918189385} a^{5} - \frac{3194910855268058153893647348768053991}{7371200959382720653795192745909469250} a^{4} + \frac{1468982764548578793803805330937583219}{3685600479691360326897596372954734625} a^{3} - \frac{2278086130531290441225026696020694967}{7371200959382720653795192745909469250} a^{2} + \frac{294319431438217922554948807000325919}{737120095938272065379519274590946925} a - \frac{1245882173594862158339735033236691549}{3685600479691360326897596372954734625}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 109026314.711 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 655360 |
| The 331 conjugacy class representatives for t20n946 are not computed |
| Character table for t20n946 is not computed |
Intermediate fields
| 5.5.2382032.1, 10.8.272355669553152.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $53$ | 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |