Normalized defining polynomial
\( x^{20} - 6 x^{19} + 31 x^{18} - 185 x^{17} + 726 x^{16} - 2791 x^{15} + 6707 x^{14} - 9101 x^{13} - 11182 x^{12} + 98279 x^{11} - 252388 x^{10} + 455708 x^{9} - 273344 x^{8} + 402406 x^{7} + 356280 x^{6} - 640982 x^{5} - 5312340 x^{4} + 3375181 x^{3} + 5015565 x^{2} + 1328191 x - 4698119 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1347783697341346832395134211051765625=5^{6}\cdot 36497^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{1691453943903562420424299017659419058200313983051116994543381201078718266} a^{19} + \frac{41498360288760656006457251177179107488330304216024167472126417749155260}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{18} + \frac{35990266685841277992033984391485902526127365593825439916942409453897079}{1691453943903562420424299017659419058200313983051116994543381201078718266} a^{17} + \frac{29445018258934331985164047635912684740454259923768812700146560897801607}{1691453943903562420424299017659419058200313983051116994543381201078718266} a^{16} - \frac{124942884682984452422596451648945450633598434307431152089898028326240536}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{15} + \frac{9363235341909729004251856807946326591898017558482572005930572266880189}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{14} - \frac{337436362372921679351713360016643156956227583024041093214918356601549764}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{13} + \frac{302714378938957304236334852957283747318322441390122539676107476037495205}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{12} + \frac{389834144125870948411936837656884180881810345290836114271216283565874433}{1691453943903562420424299017659419058200313983051116994543381201078718266} a^{11} + \frac{57950349295460052017360075762542584924315417621426190227904764068102944}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{10} - \frac{808011654610964125893314500616212661324961222728214709742550903708099925}{1691453943903562420424299017659419058200313983051116994543381201078718266} a^{9} + \frac{811817483850049541195674092232891974057446887695488367887328939013022443}{1691453943903562420424299017659419058200313983051116994543381201078718266} a^{8} + \frac{216004718656292339925253778745956616482594867656088831953642373357972365}{1691453943903562420424299017659419058200313983051116994543381201078718266} a^{7} - \frac{133990402375903885528320451980518606692867469319387386473379931706053071}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{6} + \frac{240866180262118985447078348436467710143143207878968885711764206603322369}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{5} + \frac{374969188467789791446804297457256065223315276746765708562120111756288806}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{4} - \frac{161379428754787730478396803603656049767047937788295649733645565783354356}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{3} + \frac{60000457904515495978708474792710822609364947336966324236755832251382096}{845726971951781210212149508829709529100156991525558497271690600539359133} a^{2} + \frac{247446148984885765868374533380312826362308750571186668046661859140959868}{845726971951781210212149508829709529100156991525558497271690600539359133} a - \frac{364039285232158790470290413250675752610041815741920925240497128171411947}{1691453943903562420424299017659419058200313983051116994543381201078718266}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15597214307.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n671 are not computed |
| Character table for t20n671 is not computed |
Intermediate fields
| 5.5.36497.1, 10.10.1215378393386825.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.8.6.4 | $x^{8} - 5 x^{4} + 50$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| 36497 | Data not computed | ||||||