Properties

Label 20.4.13424997368...3125.1
Degree $20$
Signature $[4, 8]$
Discriminant $5^{10}\cdot 29^{5}\cdot 1609^{4}$
Root discriminant $22.72$
Ramified primes $5, 29, 1609$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T174

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -10, 8, 35, -56, -108, 133, 229, -139, -364, 126, 266, -83, -98, 49, 36, -7, -7, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 7*x^18 - 7*x^17 + 36*x^16 + 49*x^15 - 98*x^14 - 83*x^13 + 266*x^12 + 126*x^11 - 364*x^10 - 139*x^9 + 229*x^8 + 133*x^7 - 108*x^6 - 56*x^5 + 35*x^4 + 8*x^3 - 10*x^2 - x + 1)
 
gp: K = bnfinit(x^20 - 7*x^18 - 7*x^17 + 36*x^16 + 49*x^15 - 98*x^14 - 83*x^13 + 266*x^12 + 126*x^11 - 364*x^10 - 139*x^9 + 229*x^8 + 133*x^7 - 108*x^6 - 56*x^5 + 35*x^4 + 8*x^3 - 10*x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 7 x^{18} - 7 x^{17} + 36 x^{16} + 49 x^{15} - 98 x^{14} - 83 x^{13} + 266 x^{12} + 126 x^{11} - 364 x^{10} - 139 x^{9} + 229 x^{8} + 133 x^{7} - 108 x^{6} - 56 x^{5} + 35 x^{4} + 8 x^{3} - 10 x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1342499736873772099501953125=5^{10}\cdot 29^{5}\cdot 1609^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.72$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 1609$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{1258439} a^{18} + \frac{384196}{1258439} a^{17} + \frac{268264}{1258439} a^{16} + \frac{16868}{1258439} a^{15} - \frac{209421}{1258439} a^{14} + \frac{126085}{1258439} a^{13} + \frac{38539}{1258439} a^{12} + \frac{49412}{179777} a^{11} - \frac{443743}{1258439} a^{10} + \frac{325662}{1258439} a^{9} - \frac{906}{96803} a^{8} + \frac{360345}{1258439} a^{7} - \frac{281586}{1258439} a^{6} + \frac{547}{1258439} a^{5} - \frac{460428}{1258439} a^{4} - \frac{71989}{1258439} a^{3} - \frac{85744}{179777} a^{2} + \frac{17186}{96803} a + \frac{321310}{1258439}$, $\frac{1}{30134745149509} a^{19} + \frac{8275759}{30134745149509} a^{18} + \frac{8151479937339}{30134745149509} a^{17} + \frac{13883167685066}{30134745149509} a^{16} - \frac{9734026150279}{30134745149509} a^{15} - \frac{127297399714}{2739522286319} a^{14} + \frac{11313621126820}{30134745149509} a^{13} - \frac{9155923910164}{30134745149509} a^{12} + \frac{954316496624}{30134745149509} a^{11} - \frac{5861837834858}{30134745149509} a^{10} - \frac{9816504446493}{30134745149509} a^{9} - \frac{13226788554215}{30134745149509} a^{8} + \frac{13251116462817}{30134745149509} a^{7} + \frac{3702088879297}{30134745149509} a^{6} - \frac{5593181435858}{30134745149509} a^{5} + \frac{14217981567793}{30134745149509} a^{4} + \frac{11098334219020}{30134745149509} a^{3} + \frac{9292537961923}{30134745149509} a^{2} + \frac{13531671607456}{30134745149509} a + \frac{1317146995146}{30134745149509}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 444214.312869 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T174:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 960
The 35 conjugacy class representatives for t20n174
Character table for t20n174 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 5.1.1609.1, 10.2.8090253125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ $20$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$29$29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
1609Data not computed