Normalized defining polynomial
\( x^{20} - x^{19} - 4 x^{18} + 7 x^{17} + 8 x^{16} - 22 x^{15} - 23 x^{14} + 54 x^{13} + 12 x^{12} - 55 x^{11} + 10 x^{10} - 105 x^{9} + 104 x^{8} + 18 x^{7} + 184 x^{6} - 608 x^{5} + 789 x^{4} - 523 x^{3} + 174 x^{2} - 18 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13167225195265942636954624=2^{10}\cdot 11^{16}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} + \frac{3}{11} a^{14} - \frac{5}{11} a^{13} - \frac{2}{11} a^{12} - \frac{3}{11} a^{11} + \frac{2}{11} a^{10} + \frac{5}{11} a^{9} - \frac{1}{11} a^{8} + \frac{2}{11} a^{7} - \frac{3}{11} a^{6} + \frac{4}{11} a^{4} - \frac{5}{11} a^{3} - \frac{3}{11} a^{2} + \frac{5}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{16} - \frac{3}{11} a^{14} + \frac{2}{11} a^{13} + \frac{3}{11} a^{12} - \frac{1}{11} a^{10} - \frac{5}{11} a^{9} + \frac{5}{11} a^{8} + \frac{2}{11} a^{7} - \frac{2}{11} a^{6} + \frac{4}{11} a^{5} + \frac{5}{11} a^{4} + \frac{1}{11} a^{3} + \frac{3}{11} a^{2} - \frac{3}{11} a - \frac{3}{11}$, $\frac{1}{11} a^{17} - \frac{1}{11} a^{13} + \frac{5}{11} a^{12} + \frac{1}{11} a^{11} + \frac{1}{11} a^{10} - \frac{2}{11} a^{9} - \frac{1}{11} a^{8} + \frac{4}{11} a^{7} - \frac{5}{11} a^{6} + \frac{5}{11} a^{5} + \frac{2}{11} a^{4} - \frac{1}{11} a^{3} - \frac{1}{11} a^{2} + \frac{1}{11} a + \frac{3}{11}$, $\frac{1}{473} a^{18} - \frac{12}{473} a^{17} - \frac{3}{473} a^{16} + \frac{21}{473} a^{15} + \frac{170}{473} a^{14} - \frac{171}{473} a^{13} + \frac{9}{43} a^{12} + \frac{124}{473} a^{11} - \frac{2}{473} a^{10} - \frac{6}{43} a^{9} - \frac{163}{473} a^{8} - \frac{72}{473} a^{7} - \frac{25}{473} a^{6} + \frac{7}{473} a^{5} - \frac{17}{43} a^{4} + \frac{145}{473} a^{3} + \frac{84}{473} a^{2} - \frac{60}{473} a + \frac{236}{473}$, $\frac{1}{2234985931442180653} a^{19} - \frac{1383960253294078}{2234985931442180653} a^{18} + \frac{89489078887384375}{2234985931442180653} a^{17} + \frac{5222957276254252}{203180539222016423} a^{16} - \frac{31131077379953349}{2234985931442180653} a^{15} + \frac{339380196693620672}{2234985931442180653} a^{14} - \frac{496995957780189212}{2234985931442180653} a^{13} + \frac{922951404314967751}{2234985931442180653} a^{12} + \frac{480014248185742080}{2234985931442180653} a^{11} + \frac{185268367756392476}{2234985931442180653} a^{10} + \frac{558045316852257655}{2234985931442180653} a^{9} + \frac{321658149090036646}{2234985931442180653} a^{8} + \frac{761309260859444064}{2234985931442180653} a^{7} + \frac{670957422820655050}{2234985931442180653} a^{6} - \frac{398949788247417465}{2234985931442180653} a^{5} - \frac{25900718199544570}{51976417010283271} a^{4} + \frac{276502061826057084}{2234985931442180653} a^{3} - \frac{68245320937257583}{203180539222016423} a^{2} + \frac{17123874180424529}{51976417010283271} a + \frac{109343042227801599}{2234985931442180653}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32385.6580745 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n751 are not computed |
| Character table for t20n751 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.4930254263.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |