Properties

Label 20.4.13153778808...8125.1
Degree $20$
Signature $[4, 8]$
Discriminant $5^{31}\cdot 7^{10}$
Root discriminant $32.06$
Ramified primes $5, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times F_5$ (as 20T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![161051, 0, 0, 0, 0, 259506, 0, 0, 0, 0, -10889, 0, 0, 0, 0, -144, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 144*x^15 - 10889*x^10 + 259506*x^5 + 161051)
 
gp: K = bnfinit(x^20 - 144*x^15 - 10889*x^10 + 259506*x^5 + 161051, 1)
 

Normalized defining polynomial

\( x^{20} - 144 x^{15} - 10889 x^{10} + 259506 x^{5} + 161051 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1315377880819141864776611328125=5^{31}\cdot 7^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.06$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{10} a^{10} + \frac{3}{10} a^{5} + \frac{1}{10}$, $\frac{1}{110} a^{11} - \frac{7}{110} a^{6} + \frac{21}{110} a$, $\frac{1}{110} a^{12} - \frac{7}{110} a^{7} + \frac{21}{110} a^{2}$, $\frac{1}{550} a^{13} + \frac{1}{275} a^{12} - \frac{1}{275} a^{11} - \frac{1}{50} a^{10} + \frac{103}{550} a^{8} + \frac{103}{275} a^{7} - \frac{103}{275} a^{6} - \frac{3}{50} a^{5} - \frac{199}{550} a^{3} + \frac{76}{275} a^{2} - \frac{76}{275} a - \frac{1}{50}$, $\frac{1}{550} a^{14} - \frac{1}{550} a^{12} - \frac{1}{275} a^{11} + \frac{1}{25} a^{10} + \frac{103}{550} a^{9} - \frac{103}{550} a^{7} - \frac{103}{275} a^{6} + \frac{3}{25} a^{5} - \frac{199}{550} a^{4} + \frac{199}{550} a^{2} - \frac{76}{275} a + \frac{1}{25}$, $\frac{1}{1404490450} a^{15} + \frac{9162221}{702245225} a^{10} - \frac{215998866}{702245225} a^{5} - \frac{44521051}{127680950}$, $\frac{1}{1404490450} a^{16} + \frac{5556347}{1404490450} a^{11} - \frac{342621067}{1404490450} a^{6} + \frac{323314447}{702245225} a$, $\frac{1}{15449394950} a^{17} - \frac{29142064}{7724697475} a^{12} + \frac{1456621579}{7724697475} a^{7} - \frac{2098511531}{15449394950} a^{2}$, $\frac{1}{169943344450} a^{18} - \frac{86373937}{169943344450} a^{13} - \frac{1}{275} a^{12} + \frac{1}{275} a^{11} + \frac{1}{50} a^{10} + \frac{46368177681}{169943344450} a^{8} - \frac{103}{275} a^{7} + \frac{103}{275} a^{6} + \frac{3}{50} a^{5} + \frac{1894075541}{16994334445} a^{3} - \frac{76}{275} a^{2} + \frac{76}{275} a + \frac{1}{50}$, $\frac{1}{1869376788950} a^{19} + \frac{729282779}{934688394475} a^{14} + \frac{1}{550} a^{12} + \frac{1}{275} a^{11} - \frac{1}{25} a^{10} + \frac{442635161733}{934688394475} a^{9} + \frac{103}{550} a^{7} + \frac{103}{275} a^{6} - \frac{3}{25} a^{5} + \frac{112242903631}{373875357790} a^{4} - \frac{199}{550} a^{2} + \frac{76}{275} a - \frac{1}{25}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19025685.222571 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times F_5$ (as 20T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 40
The 10 conjugacy class representatives for $C_2\times F_5$
Character table for $C_2\times F_5$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.6125.1, 5.1.78125.1, 10.2.30517578125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 10 siblings: data not computed
Degree 20 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ R R ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$7$7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$