Normalized defining polynomial
\( x^{20} - 4 x^{19} + 15 x^{18} - 45 x^{17} + 176 x^{16} - 351 x^{15} + 986 x^{14} - 1855 x^{13} + 3013 x^{12} - 1804 x^{11} - 4927 x^{10} + 22627 x^{9} - 56057 x^{8} + 95198 x^{7} - 123380 x^{6} + 123377 x^{5} - 107107 x^{4} + 82114 x^{3} - 44238 x^{2} + 13581 x - 1583 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13047078908784463218470268232704=2^{10}\cdot 3^{10}\cdot 11^{18}\cdot 197^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{7685467766561120218959661374006723725729979634} a^{19} + \frac{489300835191040255772132457899756304188780372}{3842733883280560109479830687003361862864989817} a^{18} - \frac{1274783614400264187543580214664865006427450807}{7685467766561120218959661374006723725729979634} a^{17} + \frac{876212543996915472341939884721154863047206833}{7685467766561120218959661374006723725729979634} a^{16} - \frac{167694983172702908196706360601015216565018930}{3842733883280560109479830687003361862864989817} a^{15} + \frac{723964431634966943460688005775450156502453320}{3842733883280560109479830687003361862864989817} a^{14} + \frac{222115225632189505631657857857915704412451177}{7685467766561120218959661374006723725729979634} a^{13} + \frac{1463996188404909748286576608027928618690898518}{3842733883280560109479830687003361862864989817} a^{12} + \frac{1696308137771530455951798363361656119919180131}{7685467766561120218959661374006723725729979634} a^{11} - \frac{1168723671051241595788270507823782437188205782}{3842733883280560109479830687003361862864989817} a^{10} + \frac{738929573579687077145099832438728667369281193}{3842733883280560109479830687003361862864989817} a^{9} + \frac{484162317456508553154405467860790938605303211}{7685467766561120218959661374006723725729979634} a^{8} - \frac{1777410525918417871355410121142020698447358797}{3842733883280560109479830687003361862864989817} a^{7} + \frac{22047259902204169964288805502485496276801589}{7685467766561120218959661374006723725729979634} a^{6} - \frac{1411891070355329519013735230291827500027233490}{3842733883280560109479830687003361862864989817} a^{5} + \frac{541821341500608307795361029411665841230431977}{7685467766561120218959661374006723725729979634} a^{4} - \frac{3251127312902531667735799495622838112186234083}{7685467766561120218959661374006723725729979634} a^{3} + \frac{1711222046593386172120644982384310367862948074}{3842733883280560109479830687003361862864989817} a^{2} - \frac{2594538014438065705823232849923782093436466267}{7685467766561120218959661374006723725729979634} a - \frac{1704753901090074924401218071882578836814749714}{3842733883280560109479830687003361862864989817}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17076745.3026 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 40 conjugacy class representatives for t20n262 |
| Character table for t20n262 is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 197 | Data not computed | ||||||