Normalized defining polynomial
\( x^{20} - x^{19} + 12 x^{18} - 75 x^{17} + 265 x^{16} - 1058 x^{15} + 2205 x^{14} - 3436 x^{13} + 4274 x^{12} + 5840 x^{11} - 18867 x^{10} + 25478 x^{9} - 28749 x^{8} - 86545 x^{7} + 160862 x^{6} + 216686 x^{5} - 320346 x^{4} - 111111 x^{3} + 232630 x^{2} - 252825 x + 91349 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12819390169663673256612900114045184=2^{8}\cdot 33769^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{176645668766293615540312936020448941735273139743829292484986} a^{19} + \frac{28877787112129946155482397221892350386498787114482299330743}{176645668766293615540312936020448941735273139743829292484986} a^{18} - \frac{20053115942543342421907157613202923873235461488413490985464}{88322834383146807770156468010224470867636569871914646242493} a^{17} + \frac{21328597606670596784104333056210568585377533325965937323008}{88322834383146807770156468010224470867636569871914646242493} a^{16} + \frac{36941295166661952070410121487534645861961177566566547347320}{88322834383146807770156468010224470867636569871914646242493} a^{15} + \frac{10093971388699319714699735227143334670320341469350986799233}{88322834383146807770156468010224470867636569871914646242493} a^{14} - \frac{20691879927819968131032091953927591130678640437987046602691}{88322834383146807770156468010224470867636569871914646242493} a^{13} - \frac{9982180025044765226885807831495563469726925323206365449050}{88322834383146807770156468010224470867636569871914646242493} a^{12} - \frac{13815151147065897784348774219491354204038460397423604319560}{88322834383146807770156468010224470867636569871914646242493} a^{11} - \frac{71162824268824414774548806578071930824166170037802475288037}{176645668766293615540312936020448941735273139743829292484986} a^{10} - \frac{37650345459701334979397486722507768556190874827123533080600}{88322834383146807770156468010224470867636569871914646242493} a^{9} - \frac{72087828464062129418142182499613317589260929602622146661553}{176645668766293615540312936020448941735273139743829292484986} a^{8} + \frac{35618120009289882337380220506265913811909707563429571320169}{88322834383146807770156468010224470867636569871914646242493} a^{7} + \frac{10904619131969410531017526924714730791257676123310673852521}{88322834383146807770156468010224470867636569871914646242493} a^{6} + \frac{19404832690208769673139542425674639907604604246218322654305}{176645668766293615540312936020448941735273139743829292484986} a^{5} - \frac{75642038010595525428880099964213227102163976717770999119}{4774207263953881501089538811363484911764138911995386283378} a^{4} - \frac{518581400524623504102203326283072682515304700745172918006}{2387103631976940750544769405681742455882069455997693141689} a^{3} - \frac{722910475041662986877293577377560568871492466948677733373}{4774207263953881501089538811363484911764138911995386283378} a^{2} + \frac{67193562573613587098434328839159235781330305163923237614295}{176645668766293615540312936020448941735273139743829292484986} a - \frac{25085603088218579349764939116344316966969528420712776610793}{176645668766293615540312936020448941735273139743829292484986}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1064233850.13 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n671 are not computed |
| Character table for t20n671 is not computed |
Intermediate fields
| 5.5.135076.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| 33769 | Data not computed | ||||||