Properties

Label 20.4.12498016119...0625.1
Degree $20$
Signature $[4, 8]$
Discriminant $5^{10}\cdot 61^{6}\cdot 397^{4}$
Root discriminant $25.40$
Ramified primes $5, 61, 397$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 20T368

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -33, -76, -49, 99, 82, 55, -119, -124, 50, -113, 7, -72, -46, 55, -45, 20, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 + 20*x^18 - 45*x^17 + 55*x^16 - 46*x^15 - 72*x^14 + 7*x^13 - 113*x^12 + 50*x^11 - 124*x^10 - 119*x^9 + 55*x^8 + 82*x^7 + 99*x^6 - 49*x^5 - 76*x^4 - 33*x^3 + 2*x^2 + 5*x + 1)
 
gp: K = bnfinit(x^20 - 5*x^19 + 20*x^18 - 45*x^17 + 55*x^16 - 46*x^15 - 72*x^14 + 7*x^13 - 113*x^12 + 50*x^11 - 124*x^10 - 119*x^9 + 55*x^8 + 82*x^7 + 99*x^6 - 49*x^5 - 76*x^4 - 33*x^3 + 2*x^2 + 5*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 5 x^{19} + 20 x^{18} - 45 x^{17} + 55 x^{16} - 46 x^{15} - 72 x^{14} + 7 x^{13} - 113 x^{12} + 50 x^{11} - 124 x^{10} - 119 x^{9} + 55 x^{8} + 82 x^{7} + 99 x^{6} - 49 x^{5} - 76 x^{4} - 33 x^{3} + 2 x^{2} + 5 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12498016119724696953525390625=5^{10}\cdot 61^{6}\cdot 397^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 61, 397$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2761136664497296261669} a^{19} + \frac{307994370700615320325}{2761136664497296261669} a^{18} - \frac{764940178387696557516}{2761136664497296261669} a^{17} - \frac{920789309112390397016}{2761136664497296261669} a^{16} - \frac{144289617789089144443}{2761136664497296261669} a^{15} - \frac{239445542458797548218}{2761136664497296261669} a^{14} + \frac{136581055187959156437}{2761136664497296261669} a^{13} + \frac{1165171962008709966732}{2761136664497296261669} a^{12} - \frac{754458685620068834440}{2761136664497296261669} a^{11} - \frac{414506204623147513881}{2761136664497296261669} a^{10} - \frac{1248693625274964777930}{2761136664497296261669} a^{9} - \frac{345447494763352773677}{2761136664497296261669} a^{8} - \frac{1016640731228145133006}{2761136664497296261669} a^{7} - \frac{692492712715104935076}{2761136664497296261669} a^{6} - \frac{551386155477822787767}{2761136664497296261669} a^{5} - \frac{924909754583082910408}{2761136664497296261669} a^{4} + \frac{994377634607063955764}{2761136664497296261669} a^{3} - \frac{152849633795049264306}{2761136664497296261669} a^{2} + \frac{836763146922147777382}{2761136664497296261669} a + \frac{752280855213937676389}{2761136664497296261669}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 629584.910326 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T368:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7680
The 72 conjugacy class representatives for t20n368 are not computed
Character table for t20n368 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.24217.1, 10.10.1832697153125.1, 10.2.111794526340625.1, 10.2.35774248429.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
61Data not computed
397Data not computed