Normalized defining polynomial
\( x^{20} - 6 x^{19} + 29 x^{18} - 91 x^{17} + 237 x^{16} - 491 x^{15} + 714 x^{14} - 141 x^{13} - 4578 x^{12} + 18232 x^{11} - 49524 x^{10} + 92625 x^{9} - 136668 x^{8} + 159241 x^{7} - 138321 x^{6} + 104994 x^{5} - 59393 x^{4} + 30056 x^{3} - 8878 x^{2} + 1802 x - 289 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(123578279458495716101657822265625=5^{10}\cdot 19^{7}\cdot 1699^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{13619554370241990705905109973308697061346274537} a^{19} - \frac{465458458817875609001105822398425631395303743}{1047658028480153131223469997946822850872790349} a^{18} - \frac{1362455186005239029555561531652098750482904823}{13619554370241990705905109973308697061346274537} a^{17} - \frac{4345882724331032902707315033087810499590708885}{13619554370241990705905109973308697061346274537} a^{16} + \frac{149038401891370248126868837483109232547122740}{13619554370241990705905109973308697061346274537} a^{15} - \frac{6775375838251434591284704321331207114226743557}{13619554370241990705905109973308697061346274537} a^{14} + \frac{297079006196312463726107340462109655282079332}{801150257073058276817947645488746885961545561} a^{13} - \frac{6259982068463234962157230978680264765618965820}{13619554370241990705905109973308697061346274537} a^{12} + \frac{5519863502523574558400666993761471156391406214}{13619554370241990705905109973308697061346274537} a^{11} - \frac{1332092664819752797059276651830228689574437972}{13619554370241990705905109973308697061346274537} a^{10} - \frac{399327976000195658609374428123379117489707506}{13619554370241990705905109973308697061346274537} a^{9} - \frac{4263263326600241134636466525420258528177495290}{13619554370241990705905109973308697061346274537} a^{8} - \frac{4865827591293032953628710381272206790789467699}{13619554370241990705905109973308697061346274537} a^{7} - \frac{371527673210563146963790361920712198634677867}{1047658028480153131223469997946822850872790349} a^{6} - \frac{4212885379617843504476605810611999874400025072}{13619554370241990705905109973308697061346274537} a^{5} - \frac{330556670745270025929649334973648919807859498}{1047658028480153131223469997946822850872790349} a^{4} + \frac{3511408504462589583352946638991752270443332119}{13619554370241990705905109973308697061346274537} a^{3} - \frac{244934704131427409658771300097778420294812787}{801150257073058276817947645488746885961545561} a^{2} + \frac{3861068973471284144683735142717472886013286521}{13619554370241990705905109973308697061346274537} a - \frac{38256842995180866129149233169942742379735501}{801150257073058276817947645488746885961545561}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26358711.7591 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n756 are not computed |
| Character table for t20n756 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 1699 | Data not computed | ||||||