Normalized defining polynomial
\( x^{20} - 4 x^{19} + 10 x^{18} - 24 x^{17} - 111 x^{16} + 582 x^{15} - 723 x^{14} - 855 x^{13} + 4821 x^{12} - 10390 x^{11} - 638 x^{10} + 53630 x^{9} - 30831 x^{8} - 285510 x^{7} - 67458 x^{6} + 132846 x^{5} - 10179 x^{4} + 41172 x^{3} + 56785 x^{2} + 5873 x + 6379 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(121035545052616729536866290283203125=3^{18}\cdot 5^{14}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{11} + \frac{1}{3} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{6} a^{9} + \frac{1}{4} a^{6} + \frac{1}{3} a^{4} - \frac{1}{12} a^{3} - \frac{1}{12} a^{2} + \frac{1}{6} a - \frac{5}{12}$, $\frac{1}{36} a^{14} - \frac{1}{36} a^{13} + \frac{1}{36} a^{12} + \frac{1}{36} a^{11} + \frac{1}{18} a^{10} - \frac{1}{18} a^{9} + \frac{1}{3} a^{8} - \frac{5}{12} a^{7} + \frac{1}{6} a^{6} - \frac{1}{18} a^{5} - \frac{7}{36} a^{4} - \frac{17}{36} a^{3} - \frac{7}{18} a^{2} + \frac{11}{36} a + \frac{5}{18}$, $\frac{1}{36} a^{15} + \frac{1}{18} a^{12} - \frac{1}{12} a^{11} - \frac{1}{18} a^{9} + \frac{5}{12} a^{8} + \frac{1}{4} a^{7} + \frac{1}{9} a^{6} + \frac{1}{4} a^{5} + \frac{1}{3} a^{4} - \frac{13}{36} a^{3} - \frac{1}{4} a^{2} + \frac{1}{12} a + \frac{4}{9}$, $\frac{1}{72} a^{16} - \frac{1}{72} a^{15} - \frac{1}{72} a^{14} - \frac{1}{24} a^{12} - \frac{1}{72} a^{11} - \frac{1}{72} a^{10} + \frac{13}{72} a^{9} - \frac{1}{2} a^{8} - \frac{1}{9} a^{7} - \frac{5}{36} a^{6} + \frac{23}{72} a^{5} + \frac{1}{12} a^{4} + \frac{1}{12} a^{3} - \frac{13}{72} a^{2} + \frac{7}{36} a + \frac{31}{72}$, $\frac{1}{216} a^{17} - \frac{1}{216} a^{16} + \frac{1}{216} a^{15} + \frac{1}{108} a^{14} + \frac{7}{216} a^{13} + \frac{5}{216} a^{12} - \frac{5}{216} a^{11} + \frac{29}{216} a^{10} - \frac{10}{27} a^{9} - \frac{13}{108} a^{8} + \frac{7}{108} a^{7} + \frac{43}{216} a^{6} - \frac{2}{27} a^{5} + \frac{7}{54} a^{4} + \frac{107}{216} a^{3} + \frac{1}{54} a^{2} + \frac{35}{216} a - \frac{5}{54}$, $\frac{1}{432} a^{18} - \frac{1}{144} a^{16} - \frac{1}{72} a^{14} + \frac{1}{36} a^{13} + \frac{11}{144} a^{12} - \frac{1}{16} a^{11} + \frac{1}{72} a^{10} - \frac{97}{432} a^{9} - \frac{17}{72} a^{8} + \frac{3}{16} a^{7} + \frac{65}{144} a^{6} - \frac{25}{144} a^{5} - \frac{1}{48} a^{4} - \frac{13}{48} a^{3} + \frac{1}{72} a^{2} - \frac{11}{48} a - \frac{11}{432}$, $\frac{1}{57745863525119499248129374700926615165717824} a^{19} - \frac{4184160234828443741662193269295699935097}{6416207058346611027569930522325179462857536} a^{18} - \frac{18911498056020325274377839813225936574531}{19248621175039833082709791566975538388572608} a^{17} - \frac{31128192696328364039682217504121079177865}{19248621175039833082709791566975538388572608} a^{16} - \frac{4944211580824632002308597773060175123069}{401012941146663189223120657645323716428596} a^{15} + \frac{24289585163553216075191326037460781660057}{9624310587519916541354895783487769194286304} a^{14} - \frac{721003477163446763198669964854880850374595}{19248621175039833082709791566975538388572608} a^{13} - \frac{11511065546631735520563001025207361996335}{9624310587519916541354895783487769194286304} a^{12} + \frac{129896571259499529604804355778001138475231}{6416207058346611027569930522325179462857536} a^{11} + \frac{1976414894941338820096212026326316553478463}{57745863525119499248129374700926615165717824} a^{10} + \frac{7851680419853629093264939269961366327017269}{19248621175039833082709791566975538388572608} a^{9} + \frac{440399448671292893319024268418134981936089}{2138735686115537009189976840775059820952512} a^{8} - \frac{950653474958569861064899133594794473122089}{9624310587519916541354895783487769194286304} a^{7} + \frac{971566602543352902044927021943017984364635}{2406077646879979135338723945871942298571576} a^{6} - \frac{2505046313272951364078775913886227067279563}{9624310587519916541354895783487769194286304} a^{5} + \frac{10376345307541947019950894884602299077098}{33417745095555265768593388137110309702383} a^{4} + \frac{7571183121579640390416386081623207929952591}{19248621175039833082709791566975538388572608} a^{3} - \frac{6174560629149942780843954767233210146667055}{19248621175039833082709791566975538388572608} a^{2} + \frac{1028625492116448171164944135565218745731337}{28872931762559749624064687350463307582858912} a - \frac{115223096105994278776441959329575357608371}{2138735686115537009189976840775059820952512}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2292437913.7392983 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.494325.1, 5.1.1711125.1, 10.2.38063333953125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||