Properties

Label 20.4.12078054529...3125.1
Degree $20$
Signature $[4, 8]$
Discriminant $5^{31}\cdot 11^{10}$
Root discriminant $40.19$
Ramified primes $5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times F_5$ (as 20T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![28629151, 0, 0, 0, 0, 5348406, 0, 0, 0, 0, -64864, 0, 0, 0, 0, -294, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 294*x^15 - 64864*x^10 + 5348406*x^5 + 28629151)
 
gp: K = bnfinit(x^20 - 294*x^15 - 64864*x^10 + 5348406*x^5 + 28629151, 1)
 

Normalized defining polynomial

\( x^{20} - 294 x^{15} - 64864 x^{10} + 5348406 x^{5} + 28629151 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(120780545291490852832794189453125=5^{31}\cdot 11^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.19$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{300} a^{10} - \frac{6}{25} a^{5} - \frac{149}{300}$, $\frac{1}{300} a^{11} - \frac{6}{25} a^{6} - \frac{149}{300} a$, $\frac{1}{300} a^{12} - \frac{6}{25} a^{7} - \frac{149}{300} a^{2}$, $\frac{1}{300} a^{13} - \frac{6}{25} a^{8} - \frac{149}{300} a^{3}$, $\frac{1}{300} a^{14} - \frac{6}{25} a^{9} - \frac{149}{300} a^{4}$, $\frac{1}{4474601400} a^{15} + \frac{2506507}{4474601400} a^{10} - \frac{666863537}{4474601400} a^{5} + \frac{798408229}{4474601400}$, $\frac{1}{138712643400} a^{16} - \frac{33966953}{46237547800} a^{11} - \frac{3999428317}{27742528680} a^{6} + \frac{3960168121}{46237547800} a$, $\frac{1}{4300091945400} a^{17} - \frac{2345844343}{1433363981800} a^{12} + \frac{151358732291}{860018389080} a^{7} - \frac{437608413369}{1433363981800} a^{2}$, $\frac{1}{666514251537000} a^{18} + \frac{1}{10750229863500} a^{17} - \frac{1}{346781608500} a^{16} - \frac{1}{22373007000} a^{15} - \frac{88347683251}{222171417179000} a^{13} - \frac{7102176469}{5375114931750} a^{12} + \frac{166544299}{173390804250} a^{11} - \frac{2506507}{22373007000} a^{10} - \frac{75268831933217}{666514251537000} a^{8} - \frac{1952264264147}{10750229863500} a^{7} + \frac{3351624377}{346781608500} a^{6} + \frac{5141464937}{22373007000} a^{5} - \frac{92258905087477}{222171417179000} a^{3} + \frac{745024971346}{2687557465875} a^{2} - \frac{23163738737}{173390804250} a + \frac{3676193171}{22373007000}$, $\frac{1}{20661941797647000} a^{19} - \frac{1}{21500459727000} a^{17} - \frac{1}{346781608500} a^{16} + \frac{1}{11186503500} a^{15} - \frac{6753490198621}{6887313932549000} a^{14} - \frac{21629746607}{21500459727000} a^{12} + \frac{166544299}{173390804250} a^{11} + \frac{2506507}{11186503500} a^{10} + \frac{3697201831766203}{20661941797647000} a^{9} - \frac{842795500363}{21500459727000} a^{7} + \frac{3351624377}{346781608500} a^{6} + \frac{451786813}{11186503500} a^{5} - \frac{2987152470929847}{6887313932549000} a^{4} + \frac{7734295878571}{21500459727000} a^{2} - \frac{23163738737}{173390804250} a + \frac{1917058579}{11186503500}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 184304774.0008127 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times F_5$ (as 20T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 40
The 10 conjugacy class representatives for $C_2\times F_5$
Character table for $C_2\times F_5$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.15125.1, 5.1.78125.1, 10.2.30517578125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 10 siblings: data not computed
Degree 20 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$11$11.10.5.2$x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
11.10.5.2$x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$