Normalized defining polynomial
\( x^{20} - 10 x^{19} + 44 x^{18} - 104 x^{17} + 54 x^{16} + 504 x^{15} - 1958 x^{14} + 2690 x^{13} + 495 x^{12} - 6330 x^{11} + 8600 x^{10} - 8080 x^{9} + 39757 x^{8} - 61260 x^{7} - 36548 x^{6} - 123760 x^{5} - 532103 x^{4} - 752018 x^{3} - 1449910 x^{2} - 631886 x - 61427 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(119483533089645699448237893615616=2^{30}\cdot 13^{8}\cdot 97^{2}\cdot 347^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 97, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{669252280101806356228744276293856588079318941376292221421320887} a^{19} - \frac{171961447183676381480178107365217062874398954374512884628590367}{669252280101806356228744276293856588079318941376292221421320887} a^{18} - \frac{41300797244360768321115181337239745967131407283736671488241151}{669252280101806356228744276293856588079318941376292221421320887} a^{17} + \frac{60780066655275156695856163494465937487901078094347393028552259}{669252280101806356228744276293856588079318941376292221421320887} a^{16} - \frac{204740328095874027086370200944536625252885620585808756989456769}{669252280101806356228744276293856588079318941376292221421320887} a^{15} - \frac{153999733382350130481345849355630379986455708281348910500691158}{669252280101806356228744276293856588079318941376292221421320887} a^{14} - \frac{26534128194668284429027395517862248478097484692436425192564491}{669252280101806356228744276293856588079318941376292221421320887} a^{13} - \frac{206543499492654693070458119445319598407470867526476456123738613}{669252280101806356228744276293856588079318941376292221421320887} a^{12} + \frac{327425543421610468940421893444702623528364923138142558238758011}{669252280101806356228744276293856588079318941376292221421320887} a^{11} - \frac{161570380885968131475929787827814558290786290934181065629666450}{669252280101806356228744276293856588079318941376292221421320887} a^{10} + \frac{11588931766378764764281842724903009536398051988176291721436725}{669252280101806356228744276293856588079318941376292221421320887} a^{9} + \frac{254116919100983501086742040313845511190320562985059197463339474}{669252280101806356228744276293856588079318941376292221421320887} a^{8} - \frac{82678255652957651447206164518917724383266031099729422500698146}{669252280101806356228744276293856588079318941376292221421320887} a^{7} - \frac{74882360244459689735315990204723819148384766343103172340669661}{669252280101806356228744276293856588079318941376292221421320887} a^{6} - \frac{58941089454427527349313127477392767348604985961472692868846164}{669252280101806356228744276293856588079318941376292221421320887} a^{5} + \frac{8967836126514243072403673017100588537563560326394245002545358}{669252280101806356228744276293856588079318941376292221421320887} a^{4} + \frac{123589078635042795463186363107547570659384510743141781758659310}{669252280101806356228744276293856588079318941376292221421320887} a^{3} - \frac{38861536530234156047483861813781025977877327420348327017361504}{669252280101806356228744276293856588079318941376292221421320887} a^{2} - \frac{259484660848100379372992964714880717370155522196663839051609483}{669252280101806356228744276293856588079318941376292221421320887} a - \frac{256912307119750931430222494507921943741467292149636020528734365}{669252280101806356228744276293856588079318941376292221421320887}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58397658.2608 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 155 conjugacy class representatives for t20n964 are not computed |
| Character table for t20n964 is not computed |
Intermediate fields
| 5.3.4511.1, 10.6.20837499904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 347 | Data not computed | ||||||