Normalized defining polynomial
\( x^{20} - 4 x^{19} - 8 x^{18} + 15 x^{17} - 32 x^{16} + 14 x^{15} + 196 x^{14} - 356 x^{13} + 264 x^{12} + 1087 x^{11} - 1790 x^{10} + 3261 x^{9} + 2376 x^{8} - 9612 x^{7} + 15876 x^{6} + 3402 x^{5} - 23328 x^{4} + 32805 x^{3} - 52488 x^{2} - 78732 x + 59049 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(116475591408106074082569238281250000=2^{4}\cdot 5^{14}\cdot 19^{4}\cdot 29^{6}\cdot 109^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 29, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{15} a^{11} - \frac{1}{15} a^{10} + \frac{7}{15} a^{9} - \frac{1}{5} a^{8} - \frac{1}{3} a^{7} - \frac{4}{15} a^{6} - \frac{1}{3} a^{5} - \frac{2}{15} a^{4} + \frac{1}{15} a^{2} + \frac{1}{15} a + \frac{1}{5}$, $\frac{1}{45} a^{12} - \frac{1}{45} a^{11} - \frac{2}{45} a^{10} + \frac{4}{45} a^{8} - \frac{1}{45} a^{7} + \frac{22}{45} a^{6} + \frac{7}{45} a^{5} + \frac{2}{15} a^{4} - \frac{2}{45} a^{3} + \frac{4}{45} a^{2} + \frac{2}{15} a + \frac{2}{5}$, $\frac{1}{135} a^{13} - \frac{1}{135} a^{12} - \frac{2}{135} a^{11} + \frac{4}{135} a^{9} - \frac{1}{135} a^{8} + \frac{67}{135} a^{7} + \frac{52}{135} a^{6} + \frac{17}{45} a^{5} - \frac{47}{135} a^{4} - \frac{41}{135} a^{3} - \frac{13}{45} a^{2} - \frac{1}{5} a$, $\frac{1}{405} a^{14} - \frac{1}{405} a^{13} - \frac{2}{405} a^{12} + \frac{31}{405} a^{10} - \frac{11}{81} a^{9} - \frac{19}{81} a^{8} - \frac{2}{405} a^{7} - \frac{2}{27} a^{6} - \frac{74}{405} a^{5} - \frac{14}{405} a^{4} - \frac{8}{27} a^{3} + \frac{7}{15} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{1215} a^{15} - \frac{1}{1215} a^{14} - \frac{2}{1215} a^{13} + \frac{31}{1215} a^{11} + \frac{26}{1215} a^{10} + \frac{148}{1215} a^{9} + \frac{322}{1215} a^{8} + \frac{71}{405} a^{7} - \frac{317}{1215} a^{6} - \frac{100}{243} a^{5} - \frac{13}{405} a^{4} - \frac{2}{45} a^{3} - \frac{1}{15} a^{2} - \frac{1}{15} a + \frac{1}{5}$, $\frac{1}{3645} a^{16} - \frac{1}{3645} a^{15} - \frac{2}{3645} a^{14} + \frac{31}{3645} a^{12} + \frac{26}{3645} a^{11} - \frac{338}{3645} a^{10} - \frac{1136}{3645} a^{9} + \frac{233}{1215} a^{8} - \frac{112}{729} a^{7} + \frac{958}{3645} a^{6} + \frac{554}{1215} a^{5} - \frac{13}{27} a^{4} + \frac{17}{45} a^{3} + \frac{11}{45} a^{2} - \frac{2}{5}$, $\frac{1}{10935} a^{17} - \frac{1}{10935} a^{16} - \frac{2}{10935} a^{15} + \frac{31}{10935} a^{13} + \frac{26}{10935} a^{12} - \frac{338}{10935} a^{11} - \frac{407}{10935} a^{10} - \frac{1468}{3645} a^{9} - \frac{4934}{10935} a^{8} + \frac{629}{2187} a^{7} - \frac{35}{729} a^{6} - \frac{92}{405} a^{5} + \frac{26}{135} a^{4} - \frac{16}{135} a^{3} - \frac{7}{15} a^{2} - \frac{4}{15} a + \frac{1}{5}$, $\frac{1}{77773765950} a^{18} - \frac{1338683}{38886882975} a^{17} - \frac{2352089}{77773765950} a^{16} + \frac{295309}{8641529550} a^{15} - \frac{72196997}{77773765950} a^{14} + \frac{8535409}{15554753190} a^{13} - \frac{255923573}{77773765950} a^{12} + \frac{336949709}{15554753190} a^{11} - \frac{1332982519}{25924588650} a^{10} + \frac{8416599803}{38886882975} a^{9} - \frac{35095449641}{77773765950} a^{8} + \frac{962010853}{5184917730} a^{7} + \frac{1095426727}{2880509850} a^{6} - \frac{5214043}{576101970} a^{5} - \frac{418108141}{960169950} a^{4} - \frac{49499599}{106685550} a^{3} + \frac{5538077}{11853950} a^{2} - \frac{153288}{5926975} a + \frac{2370793}{11853950}$, $\frac{1}{233321297850} a^{19} - \frac{1}{233321297850} a^{18} - \frac{919739}{233321297850} a^{17} - \frac{340918}{12962294325} a^{16} + \frac{402419}{116660648925} a^{15} - \frac{3253033}{23332129785} a^{14} - \frac{389566069}{116660648925} a^{13} + \frac{178556128}{23332129785} a^{12} - \frac{198463367}{38886882975} a^{11} - \frac{12264462209}{233321297850} a^{10} - \frac{4736793911}{233321297850} a^{9} - \frac{2035446694}{7777376595} a^{8} + \frac{5666946718}{12962294325} a^{7} + \frac{100563097}{288050985} a^{6} - \frac{77056957}{160028325} a^{5} - \frac{217353241}{480084975} a^{4} - \frac{39336311}{160028325} a^{3} - \frac{7343243}{106685550} a^{2} + \frac{6173933}{35561850} a - \frac{887001}{2370790}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7615773802.29 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 819200 |
| The 275 conjugacy class representatives for t20n955 are not computed |
| Character table for t20n955 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.8172298511640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | R | $20$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.10.0.1 | $x^{10} + x^{2} - 2 x + 14$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $109$ | 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.4.3.4 | $x^{4} + 23544$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |