Normalized defining polynomial
\( x^{20} - 9 x^{19} + 13 x^{18} + 61 x^{17} + 67 x^{16} - 1113 x^{15} - 713 x^{14} + 10887 x^{13} - 3031 x^{12} - 52413 x^{11} + 87067 x^{10} - 104641 x^{9} + 209295 x^{8} - 126527 x^{7} - 135103 x^{6} + 88253 x^{5} - 189846 x^{4} + 341222 x^{3} - 1960 x^{2} - 209480 x + 78434 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1144969220603926317200000000000000=2^{16}\cdot 5^{14}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{13} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{816} a^{18} - \frac{25}{816} a^{17} - \frac{7}{136} a^{16} + \frac{3}{34} a^{15} + \frac{73}{816} a^{14} + \frac{47}{816} a^{13} - \frac{47}{408} a^{11} + \frac{35}{272} a^{10} + \frac{101}{816} a^{9} - \frac{67}{204} a^{8} + \frac{23}{51} a^{7} - \frac{79}{272} a^{6} - \frac{29}{272} a^{5} + \frac{59}{204} a^{4} - \frac{29}{136} a^{3} - \frac{137}{408} a^{2} + \frac{1}{17} a + \frac{179}{408}$, $\frac{1}{16951336872829553268028113009918528664416} a^{19} - \frac{5011450648592525765124971575512344773}{8475668436414776634014056504959264332208} a^{18} + \frac{198362610827885095363359196839786800491}{16951336872829553268028113009918528664416} a^{17} - \frac{349071351900434587155911091214559109671}{2825222812138258878004685501653088110736} a^{16} - \frac{1226379638384832081249692788505312947307}{16951336872829553268028113009918528664416} a^{15} - \frac{739598753889977774180704433400589528519}{8475668436414776634014056504959264332208} a^{14} - \frac{1542467388075526140307327426463574107015}{16951336872829553268028113009918528664416} a^{13} - \frac{10459082775792690156388573986212440877}{197108568288715735674745500115331728656} a^{12} + \frac{267427387044227615321937856538221202359}{16951336872829553268028113009918528664416} a^{11} - \frac{376637445989390076990748279288190592079}{4237834218207388317007028252479632166104} a^{10} + \frac{2210428664858553834951276053824278046457}{5650445624276517756009371003306176221472} a^{9} + \frac{114361977906203447759948623593104411417}{353152851517282359750585687706636013842} a^{8} - \frac{8260412237914488580989324454011358372145}{16951336872829553268028113009918528664416} a^{7} + \frac{1218446370055197476466855021402581422003}{2825222812138258878004685501653088110736} a^{6} - \frac{6251720297959485023945690467496857611637}{16951336872829553268028113009918528664416} a^{5} + \frac{270530800505021620377542185030348964927}{8475668436414776634014056504959264332208} a^{4} + \frac{525959977464063888068731453377018601691}{4237834218207388317007028252479632166104} a^{3} - \frac{1076207764316539209348684916200232674007}{8475668436414776634014056504959264332208} a^{2} - \frac{219913757890732939476482674089253505377}{8475668436414776634014056504959264332208} a - \frac{1945832153189499056072832722980381418891}{8475668436414776634014056504959264332208}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2400799092.9352427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.122825.1, 5.1.578000.2, 10.2.5679428000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||