Normalized defining polynomial
\( x^{20} - 8 x^{19} + 22 x^{18} - 30 x^{17} + 67 x^{16} - 156 x^{15} + 174 x^{14} - 336 x^{13} + 26 x^{12} + 736 x^{11} + 3221 x^{10} - 1154 x^{9} - 9592 x^{8} - 8796 x^{7} + 8344 x^{6} + 13780 x^{5} + 4419 x^{4} + 4599 x^{3} + 13748 x^{2} + 10505 x + 1829 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11414008091096093897705078125=5^{13}\cdot 13^{4}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{41} a^{16} - \frac{18}{41} a^{15} - \frac{20}{41} a^{14} - \frac{17}{41} a^{13} + \frac{5}{41} a^{12} - \frac{19}{41} a^{11} + \frac{1}{41} a^{10} - \frac{2}{41} a^{9} + \frac{9}{41} a^{8} - \frac{1}{41} a^{7} - \frac{11}{41} a^{6} - \frac{20}{41} a^{5} + \frac{17}{41} a^{3} + \frac{6}{41} a^{2} + \frac{16}{41} a - \frac{1}{41}$, $\frac{1}{41} a^{17} - \frac{16}{41} a^{15} - \frac{8}{41} a^{14} - \frac{14}{41} a^{13} - \frac{11}{41} a^{12} - \frac{13}{41} a^{11} + \frac{16}{41} a^{10} + \frac{14}{41} a^{9} - \frac{3}{41} a^{8} + \frac{12}{41} a^{7} - \frac{13}{41} a^{6} + \frac{9}{41} a^{5} + \frac{17}{41} a^{4} - \frac{16}{41} a^{3} + \frac{1}{41} a^{2} - \frac{18}{41}$, $\frac{1}{41} a^{18} - \frac{9}{41} a^{15} - \frac{6}{41} a^{14} + \frac{4}{41} a^{13} - \frac{15}{41} a^{12} - \frac{1}{41} a^{11} - \frac{11}{41} a^{10} + \frac{6}{41} a^{9} - \frac{8}{41} a^{8} + \frac{12}{41} a^{7} - \frac{3}{41} a^{6} - \frac{16}{41} a^{5} - \frac{16}{41} a^{4} - \frac{14}{41} a^{3} + \frac{14}{41} a^{2} - \frac{8}{41} a - \frac{16}{41}$, $\frac{1}{3624823444252478901006446648750675413} a^{19} + \frac{7984721658445387173957396289447302}{3624823444252478901006446648750675413} a^{18} - \frac{37700763286083358151311997785993823}{3624823444252478901006446648750675413} a^{17} + \frac{938066820137370850657416045866054}{88410327908597046366010893871967693} a^{16} + \frac{1414253915958644094283552498898463050}{3624823444252478901006446648750675413} a^{15} - \frac{1723643896230975393075488144411152582}{3624823444252478901006446648750675413} a^{14} + \frac{1155175235546484102249722105518451580}{3624823444252478901006446648750675413} a^{13} - \frac{167520068432019783374369050602691263}{3624823444252478901006446648750675413} a^{12} + \frac{781651200246418662154105913825900980}{3624823444252478901006446648750675413} a^{11} - \frac{151327549124509026112272142520063764}{3624823444252478901006446648750675413} a^{10} - \frac{697199154527842516299906799825281469}{3624823444252478901006446648750675413} a^{9} - \frac{236548148997892694648836644004581292}{3624823444252478901006446648750675413} a^{8} - \frac{384144449816523690978476485693073004}{3624823444252478901006446648750675413} a^{7} + \frac{1119897054863702076100819360084294006}{3624823444252478901006446648750675413} a^{6} - \frac{431228367610804601428178753653900719}{3624823444252478901006446648750675413} a^{5} - \frac{39252602655835708538877581319696741}{88410327908597046366010893871967693} a^{4} - \frac{741484234017395462986296960194992660}{3624823444252478901006446648750675413} a^{3} - \frac{356464321820467776787449469397706303}{3624823444252478901006446648750675413} a^{2} + \frac{106859603816930264876009487630902045}{3624823444252478901006446648750675413} a + \frac{1362127048829122819481319688123927546}{3624823444252478901006446648750675413}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1050250.97592 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.1.2665.1, 10.2.887778125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |