Normalized defining polynomial
\( x^{20} - x^{19} + 5 x^{18} - 14 x^{17} + 27 x^{16} - 65 x^{15} + 127 x^{14} - 169 x^{13} + 158 x^{12} - 226 x^{11} - 23 x^{10} - 33 x^{9} - 106 x^{8} - 36 x^{7} - 35 x^{6} - 27 x^{5} - 8 x^{4} + 12 x^{3} - x^{2} + 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(113494176301780230947265625=5^{10}\cdot 7^{8}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{247} a^{16} + \frac{67}{247} a^{14} + \frac{10}{247} a^{13} - \frac{4}{19} a^{12} + \frac{92}{247} a^{11} + \frac{3}{19} a^{10} - \frac{40}{247} a^{9} - \frac{120}{247} a^{8} + \frac{94}{247} a^{7} + \frac{45}{247} a^{6} - \frac{84}{247} a^{5} - \frac{6}{13} a^{4} - \frac{67}{247} a^{3} - \frac{8}{19} a^{2} + \frac{6}{13} a + \frac{73}{247}$, $\frac{1}{247} a^{17} + \frac{67}{247} a^{15} + \frac{10}{247} a^{14} - \frac{4}{19} a^{13} + \frac{92}{247} a^{12} + \frac{3}{19} a^{11} - \frac{40}{247} a^{10} - \frac{120}{247} a^{9} + \frac{94}{247} a^{8} + \frac{45}{247} a^{7} - \frac{84}{247} a^{6} - \frac{6}{13} a^{5} - \frac{67}{247} a^{4} - \frac{8}{19} a^{3} + \frac{6}{13} a^{2} + \frac{73}{247} a$, $\frac{1}{4693} a^{18} + \frac{9}{4693} a^{17} + \frac{5}{4693} a^{16} - \frac{1857}{4693} a^{15} + \frac{2306}{4693} a^{14} + \frac{239}{4693} a^{13} + \frac{386}{4693} a^{12} - \frac{1935}{4693} a^{11} + \frac{1301}{4693} a^{10} + \frac{1741}{4693} a^{9} - \frac{67}{4693} a^{8} - \frac{1802}{4693} a^{7} + \frac{539}{4693} a^{6} - \frac{331}{4693} a^{5} - \frac{2037}{4693} a^{4} + \frac{368}{4693} a^{3} - \frac{357}{4693} a^{2} + \frac{505}{4693} a - \frac{1809}{4693}$, $\frac{1}{35140023829391} a^{19} + \frac{185261880}{1849474938389} a^{18} - \frac{1511628151}{1849474938389} a^{17} + \frac{17511810463}{35140023829391} a^{16} - \frac{26314215296}{142267302953} a^{15} + \frac{577408346901}{2703078756107} a^{14} - \frac{8037665121123}{35140023829391} a^{13} - \frac{1034548587078}{35140023829391} a^{12} + \frac{4722976257897}{35140023829391} a^{11} + \frac{10246092147010}{35140023829391} a^{10} - \frac{2111476404239}{35140023829391} a^{9} - \frac{165774372471}{423373781077} a^{8} - \frac{16966688773845}{35140023829391} a^{7} + \frac{1682105958113}{35140023829391} a^{6} - \frac{8428965278755}{35140023829391} a^{5} + \frac{16543508006229}{35140023829391} a^{4} + \frac{14436616117516}{35140023829391} a^{3} + \frac{4236815101646}{35140023829391} a^{2} - \frac{6497163262333}{35140023829391} a - \frac{11801388893410}{35140023829391}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 106567.833621 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times D_5$ (as 20T8):
| A solvable group of order 40 |
| The 16 conjugacy class representatives for $C_2^2\times D_5$ |
| Character table for $C_2^2\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{85}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{5}, \sqrt{17})\), 5.1.14161.1, 10.2.626668503125.1, 10.2.10653364553125.1, 10.2.3409076657.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |