Normalized defining polynomial
\( x^{20} - 145 x^{18} + 9690 x^{16} - 4 x^{15} - 392380 x^{14} - 330 x^{13} + 10648925 x^{12} + 30210 x^{11} - 202311647 x^{10} - 849540 x^{9} + 2725736800 x^{8} + 10059910 x^{7} - 25731161080 x^{6} - 11303998 x^{5} + 162923648340 x^{4} - 824749960 x^{3} - 624326270020 x^{2} + 5476545300 x + 1096989910724 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(111459829947325406406250000000000000000=2^{16}\cdot 5^{22}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} + \frac{3}{14} a^{16} + \frac{1}{14} a^{15} + \frac{3}{14} a^{14} + \frac{1}{7} a^{12} - \frac{1}{7} a^{10} + \frac{2}{7} a^{9} + \frac{5}{14} a^{8} + \frac{3}{14} a^{7} - \frac{2}{7} a^{6} - \frac{5}{14} a^{5} - \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{9926255053023636160768374353173761916416220772508702145915606885081514043478886} a^{19} + \frac{64765134502868890249101786832026968150653800254449346442529984205979000000714}{4963127526511818080384187176586880958208110386254351072957803442540757021739443} a^{18} - \frac{613840169571789896872574850670011250988697198243852088660089813606329368560463}{4963127526511818080384187176586880958208110386254351072957803442540757021739443} a^{17} - \frac{1111972176179963818282411609640221656465368509712659981476550990756945792112235}{9926255053023636160768374353173761916416220772508702145915606885081514043478886} a^{16} + \frac{793293550985912485046869488126328753338291619288888308444871841943348503657645}{9926255053023636160768374353173761916416220772508702145915606885081514043478886} a^{15} + \frac{206770036490621254121550771813216775348809671522065697223146267123675062229033}{1418036436146233737252624907596251702345174396072671735130800983583073434782698} a^{14} - \frac{1147642790103503035319481409156560741928869305253775187607501897671574486787891}{9926255053023636160768374353173761916416220772508702145915606885081514043478886} a^{13} - \frac{89909449929484166161454224442468035910143901908837389786759149469455418221404}{709018218073116868626312453798125851172587198036335867565400491791536717391349} a^{12} - \frac{681968944003452335227354360105626229083564545679098410776002293646239308219487}{9926255053023636160768374353173761916416220772508702145915606885081514043478886} a^{11} + \frac{1677013966039239295174707154173228152151795056127578434889991962284656089548523}{9926255053023636160768374353173761916416220772508702145915606885081514043478886} a^{10} - \frac{3083974967426824278578615519002838620184308405267615728531843324999933228801333}{9926255053023636160768374353173761916416220772508702145915606885081514043478886} a^{9} - \frac{542670352994949661062583065810721701736460750610217731062515264129914314251615}{9926255053023636160768374353173761916416220772508702145915606885081514043478886} a^{8} - \frac{2805009825104961407497859142570887868760376661552568706783273124886616069644671}{9926255053023636160768374353173761916416220772508702145915606885081514043478886} a^{7} - \frac{477793679195705263074920744108224720140211292417958126334918407830625288627804}{4963127526511818080384187176586880958208110386254351072957803442540757021739443} a^{6} + \frac{1661344052897900906173222445293519412680415059630209723219818536005925296958575}{4963127526511818080384187176586880958208110386254351072957803442540757021739443} a^{5} - \frac{378110386064300340203644568413193870879860272243328346425353673757998107323544}{4963127526511818080384187176586880958208110386254351072957803442540757021739443} a^{4} + \frac{641220426823203297671328772087172081099933738212770503883354709103295765728996}{4963127526511818080384187176586880958208110386254351072957803442540757021739443} a^{3} - \frac{412230789354122890655835347420947710640397280269895472832875614443751276305610}{4963127526511818080384187176586880958208110386254351072957803442540757021739443} a^{2} - \frac{2467003002355786512243203772145588075458553653938509992025616017423778440946640}{4963127526511818080384187176586880958208110386254351072957803442540757021739443} a + \frac{242802758672197674019705397885111057520053232899946295280742861175739035847877}{709018218073116868626312453798125851172587198036335867565400491791536717391349}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{305}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{61})\), 5.1.50000.1, 10.2.10557453762500000000.1, 10.2.2111490752500000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $61$ | 61.10.5.1 | $x^{10} - 7442 x^{6} + 13845841 x^{2} - 30405466836$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 61.10.5.1 | $x^{10} - 7442 x^{6} + 13845841 x^{2} - 30405466836$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |