Properties

Label 20.4.10922267596...5625.1
Degree $20$
Signature $[4, 8]$
Discriminant $5^{10}\cdot 5783^{4}$
Root discriminant $12.64$
Ramified primes $5, 5783$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T279

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 4, 13, -26, 3, 16, 4, -21, 21, -21, 4, 16, 3, -26, 13, 4, -1, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - x^18 + 4*x^17 + 13*x^16 - 26*x^15 + 3*x^14 + 16*x^13 + 4*x^12 - 21*x^11 + 21*x^10 - 21*x^9 + 4*x^8 + 16*x^7 + 3*x^6 - 26*x^5 + 13*x^4 + 4*x^3 - x^2 - 3*x + 1)
 
gp: K = bnfinit(x^20 - 3*x^19 - x^18 + 4*x^17 + 13*x^16 - 26*x^15 + 3*x^14 + 16*x^13 + 4*x^12 - 21*x^11 + 21*x^10 - 21*x^9 + 4*x^8 + 16*x^7 + 3*x^6 - 26*x^5 + 13*x^4 + 4*x^3 - x^2 - 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} - x^{18} + 4 x^{17} + 13 x^{16} - 26 x^{15} + 3 x^{14} + 16 x^{13} + 4 x^{12} - 21 x^{11} + 21 x^{10} - 21 x^{9} + 4 x^{8} + 16 x^{7} + 3 x^{6} - 26 x^{5} + 13 x^{4} + 4 x^{3} - x^{2} - 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10922267596307822265625=5^{10}\cdot 5783^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 5783$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23123} a^{18} - \frac{9}{1217} a^{17} + \frac{5603}{23123} a^{16} + \frac{6914}{23123} a^{15} - \frac{10992}{23123} a^{14} - \frac{10124}{23123} a^{13} + \frac{725}{23123} a^{12} + \frac{3955}{23123} a^{11} + \frac{5406}{23123} a^{10} - \frac{10387}{23123} a^{9} + \frac{5406}{23123} a^{8} + \frac{3955}{23123} a^{7} + \frac{725}{23123} a^{6} - \frac{10124}{23123} a^{5} - \frac{10992}{23123} a^{4} + \frac{6914}{23123} a^{3} + \frac{5603}{23123} a^{2} - \frac{9}{1217} a + \frac{1}{23123}$, $\frac{1}{254353} a^{19} - \frac{4}{254353} a^{18} - \frac{22954}{254353} a^{17} - \frac{121043}{254353} a^{16} - \frac{58750}{254353} a^{15} + \frac{50298}{254353} a^{14} - \frac{25127}{254353} a^{13} - \frac{36831}{254353} a^{12} - \frac{74045}{254353} a^{11} + \frac{83110}{254353} a^{10} - \frac{64367}{254353} a^{9} - \frac{64409}{254353} a^{8} + \frac{83135}{254353} a^{7} - \frac{74033}{254353} a^{6} - \frac{36844}{254353} a^{5} - \frac{1324}{13387} a^{4} + \frac{50337}{254353} a^{3} - \frac{58759}{254353} a^{2} - \frac{121048}{254353} a - \frac{22956}{254353}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 761.500833891 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T279:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 3840
The 36 conjugacy class representatives for t20n279
Character table for t20n279 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.3.5783.1, 10.6.104509653125.1, 10.2.836077225.1, 10.2.4180386125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
5783Data not computed