Normalized defining polynomial
\( x^{20} - 63 x^{16} + 122 x^{14} + 1155 x^{12} - 3654 x^{10} - 4357 x^{8} + 26704 x^{6} - 21794 x^{4} - 4046 x^{2} + 4913 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10367525357153855329853928112128=2^{20}\cdot 3^{4}\cdot 17^{7}\cdot 4153^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 4153$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{34} a^{12} - \frac{5}{34} a^{10} + \frac{7}{34} a^{8} + \frac{15}{34} a^{6} - \frac{8}{17} a^{4} - \frac{9}{34} a^{2}$, $\frac{1}{34} a^{13} - \frac{5}{34} a^{11} + \frac{7}{34} a^{9} + \frac{15}{34} a^{7} - \frac{8}{17} a^{5} - \frac{9}{34} a^{3}$, $\frac{1}{34} a^{14} - \frac{1}{34} a^{10} - \frac{1}{34} a^{8} + \frac{4}{17} a^{6} - \frac{2}{17} a^{4} - \frac{11}{34} a^{2} - \frac{1}{2}$, $\frac{1}{34} a^{15} - \frac{1}{34} a^{11} - \frac{1}{34} a^{9} + \frac{4}{17} a^{7} - \frac{2}{17} a^{5} - \frac{11}{34} a^{3} - \frac{1}{2} a$, $\frac{1}{102} a^{16} - \frac{1}{102} a^{14} - \frac{1}{102} a^{12} + \frac{1}{6} a^{10} - \frac{7}{17} a^{8} + \frac{5}{102} a^{6} - \frac{4}{17} a^{4} - \frac{1}{17} a^{2} + \frac{1}{3}$, $\frac{1}{102} a^{17} - \frac{1}{102} a^{15} - \frac{1}{102} a^{13} + \frac{1}{6} a^{11} - \frac{7}{17} a^{9} + \frac{5}{102} a^{7} - \frac{4}{17} a^{5} - \frac{1}{17} a^{3} + \frac{1}{3} a$, $\frac{1}{4515760567911102} a^{18} + \frac{189863000673}{88544324861002} a^{16} + \frac{21214354350473}{2257880283955551} a^{14} - \frac{14443471805374}{2257880283955551} a^{12} + \frac{26584110703237}{2257880283955551} a^{10} + \frac{366198264486623}{4515760567911102} a^{8} - \frac{850356290209375}{4515760567911102} a^{6} - \frac{284287413442638}{752626761318517} a^{4} - \frac{35332678966496}{132816487291503} a^{2} - \frac{2512076528903}{15625469093118}$, $\frac{1}{4515760567911102} a^{19} + \frac{189863000673}{88544324861002} a^{17} + \frac{21214354350473}{2257880283955551} a^{15} - \frac{14443471805374}{2257880283955551} a^{13} + \frac{26584110703237}{2257880283955551} a^{11} + \frac{366198264486623}{4515760567911102} a^{9} - \frac{850356290209375}{4515760567911102} a^{7} - \frac{284287413442638}{752626761318517} a^{5} - \frac{35332678966496}{132816487291503} a^{3} - \frac{2512076528903}{15625469093118} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30253831.5354 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n804 are not computed |
| Character table for t20n804 is not computed |
Intermediate fields
| 5.5.70601.1, 10.6.44860510809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 4153 | Data not computed | ||||||