Normalized defining polynomial
\( x^{20} - 5 x^{19} + 13 x^{18} - 26 x^{17} + 95 x^{16} - 277 x^{15} - 41 x^{14} + 210 x^{13} + 435 x^{12} + 6169 x^{11} - 11727 x^{10} + 13358 x^{9} - 35540 x^{8} + 37180 x^{7} - 40484 x^{6} + 37406 x^{5} - 10440 x^{4} + 11392 x^{3} + 3180 x^{2} + 736 x + 1036 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102371786028181514000000000000000=2^{16}\cdot 5^{15}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{6} a^{16} + \frac{1}{6} a^{14} + \frac{1}{6} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{17} + \frac{1}{6} a^{15} + \frac{1}{6} a^{14} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{18} + \frac{1}{6} a^{15} - \frac{1}{6} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{1244062596247638775476798325570489217875386} a^{19} + \frac{441462238170103115025016988045059151330}{622031298123819387738399162785244608937693} a^{18} + \frac{43182684324072914817728258212153405894103}{1244062596247638775476798325570489217875386} a^{17} - \frac{7081827538168961666659598749120211343093}{207343766041273129246133054261748202979231} a^{16} - \frac{103922332845487487530584156028989443500970}{622031298123819387738399162785244608937693} a^{15} - \frac{57974548446255488429050397983459726619191}{1244062596247638775476798325570489217875386} a^{14} - \frac{65451692639407275863120775583406625006037}{1244062596247638775476798325570489217875386} a^{13} - \frac{143720604556091499144242102622661259272553}{622031298123819387738399162785244608937693} a^{12} + \frac{87289447639063863288609800292772108764230}{622031298123819387738399162785244608937693} a^{11} - \frac{297162815223155861772895350718833684476651}{1244062596247638775476798325570489217875386} a^{10} + \frac{15321710667267062116581248070895829706867}{414687532082546258492266108523496405958462} a^{9} - \frac{177272392722399960646898526582874841726849}{622031298123819387738399162785244608937693} a^{8} + \frac{342434171348832587281287259419050856205595}{1244062596247638775476798325570489217875386} a^{7} + \frac{406793644146068003208412599309751679183389}{1244062596247638775476798325570489217875386} a^{6} + \frac{63126656628315164976378511313646298066585}{207343766041273129246133054261748202979231} a^{5} - \frac{152008209289453792008939191179989526786805}{622031298123819387738399162785244608937693} a^{4} - \frac{182426467581787628754004716815532271661338}{622031298123819387738399162785244608937693} a^{3} + \frac{122154749675195675409892019869549846710124}{622031298123819387738399162785244608937693} a^{2} - \frac{38974387153380623856078393836377131598314}{207343766041273129246133054261748202979231} a - \frac{106450518979225113641758050239815050383383}{622031298123819387738399162785244608937693}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 175565790.70089695 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), 4.4.274625.2, 5.1.338000.1, 10.2.7425860000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||