Normalized defining polynomial
\( x^{20} - 5 x^{19} - 6 x^{18} + 64 x^{17} - 25 x^{16} - 275 x^{15} + 412 x^{14} - 572 x^{13} - 200 x^{12} + 7060 x^{11} - 12604 x^{10} + 808 x^{9} + 14928 x^{8} - 29104 x^{7} + 27328 x^{6} + 21312 x^{5} - 35648 x^{4} + 25728 x^{3} - 8064 x^{2} - 27648 x + 20736 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102371786028181514000000000000000=2^{16}\cdot 5^{15}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} - \frac{3}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{11} - \frac{1}{12} a^{10} + \frac{1}{24} a^{9} + \frac{1}{8} a^{7} - \frac{1}{6} a^{6} - \frac{1}{12} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{13} + \frac{1}{24} a^{12} - \frac{1}{12} a^{11} + \frac{1}{16} a^{10} + \frac{5}{48} a^{9} - \frac{1}{4} a^{8} + \frac{1}{6} a^{7} + \frac{5}{12} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{96} a^{15} - \frac{1}{96} a^{14} - \frac{1}{48} a^{13} - \frac{1}{24} a^{12} - \frac{5}{96} a^{11} + \frac{1}{96} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{7}{24} a^{7} + \frac{1}{24} a^{6} + \frac{5}{24} a^{5} - \frac{1}{4} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{96} a^{16} - \frac{1}{96} a^{14} - \frac{5}{96} a^{12} + \frac{1}{24} a^{11} - \frac{1}{96} a^{10} - \frac{7}{48} a^{9} - \frac{5}{24} a^{8} + \frac{5}{12} a^{7} + \frac{1}{3} a^{6} + \frac{1}{24} a^{5} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{192} a^{17} - \frac{1}{192} a^{16} - \frac{1}{96} a^{14} + \frac{1}{64} a^{13} + \frac{1}{192} a^{12} + \frac{7}{96} a^{11} + \frac{7}{96} a^{10} + \frac{1}{8} a^{9} + \frac{5}{48} a^{8} + \frac{23}{48} a^{7} + \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{1152} a^{18} + \frac{1}{1152} a^{17} + \frac{1}{288} a^{15} + \frac{11}{1152} a^{14} - \frac{17}{1152} a^{13} - \frac{25}{576} a^{12} - \frac{11}{288} a^{11} + \frac{1}{288} a^{10} + \frac{49}{288} a^{9} - \frac{43}{288} a^{8} - \frac{5}{72} a^{7} - \frac{1}{3} a^{6} - \frac{17}{36} a^{5} + \frac{2}{9} a^{4} + \frac{5}{12} a^{3} + \frac{7}{18} a^{2}$, $\frac{1}{20278495558828447130556991337894784} a^{19} + \frac{2039838204131713151128344979297}{5069623889707111782639247834473696} a^{18} + \frac{7079714828014359843369162471067}{6759498519609482376852330445964928} a^{17} - \frac{9883888239673654886406410217787}{10139247779414223565278495668947392} a^{16} + \frac{56469819220576713437272538346299}{20278495558828447130556991337894784} a^{15} + \frac{13280984845015199829144938936677}{5069623889707111782639247834473696} a^{14} - \frac{398732949219332828631383952674699}{20278495558828447130556991337894784} a^{13} + \frac{133653031910840656792961217372767}{2534811944853555891319623917236848} a^{12} - \frac{620691904315163613262512681433}{158425746553347243207476494827303} a^{11} - \frac{279316353977510379269620112947061}{5069623889707111782639247834473696} a^{10} - \frac{68565573196410859937096126749699}{316851493106694486414952989654606} a^{9} + \frac{473803389132920412343847169007369}{5069623889707111782639247834473696} a^{8} - \frac{86721756415069048592955635166761}{844937314951185297106541305745616} a^{7} - \frac{473018761428484151254349820241477}{1267405972426777945659811958618424} a^{6} + \frac{459003282841721120861535838996813}{1267405972426777945659811958618424} a^{5} - \frac{10434410064023378374236076352615}{23470480970866258252959480715156} a^{4} + \frac{268865416494370877195993712961907}{633702986213388972829905979309212} a^{3} + \frac{23159042094389962721889246290129}{105617164368898162138317663218202} a^{2} - \frac{6596886514970731535313282746864}{17602860728149693689719610536367} a - \frac{1382279781557240600920215031758}{5867620242716564563239870178789}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 823000471.8315867 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), 4.4.274625.1, 5.1.338000.1, 10.2.7425860000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||