Normalized defining polynomial
\( x^{20} - 3 x^{19} - 14 x^{18} + 27 x^{17} + 296 x^{16} - 739 x^{15} - 1716 x^{14} + 6652 x^{13} - 1384 x^{12} - 1392 x^{11} - 38460 x^{10} + 36628 x^{9} + 85072 x^{8} - 14126 x^{7} - 273260 x^{6} + 127193 x^{5} + 651681 x^{4} - 229360 x^{3} - 768525 x^{2} - 300750 x - 14125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10175972532709207369643951416015625=5^{15}\cdot 37^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{35410} a^{18} - \frac{2723}{35410} a^{17} - \frac{1387}{17705} a^{16} + \frac{3966}{17705} a^{15} - \frac{3797}{17705} a^{14} - \frac{6212}{17705} a^{13} + \frac{1367}{17705} a^{12} + \frac{1956}{17705} a^{11} + \frac{2513}{17705} a^{10} + \frac{8364}{17705} a^{9} + \frac{151}{3541} a^{8} + \frac{2754}{17705} a^{7} + \frac{5251}{17705} a^{6} - \frac{8758}{17705} a^{5} + \frac{902}{3541} a^{4} - \frac{11927}{35410} a^{3} + \frac{8761}{35410} a^{2} + \frac{1266}{3541} a + \frac{444}{3541}$, $\frac{1}{17683284733345503062059607068831198035578533657993576900} a^{19} - \frac{62965613296993317811381310843581317293302992534939}{8841642366672751531029803534415599017789266828996788450} a^{18} + \frac{839548139091112809125627819991077313983816739129540443}{8841642366672751531029803534415599017789266828996788450} a^{17} - \frac{1283566983242645394060028984275795510752152012500072373}{17683284733345503062059607068831198035578533657993576900} a^{16} + \frac{460186297897823056511151298243728430837446267924553121}{17683284733345503062059607068831198035578533657993576900} a^{15} + \frac{1362654182021863771136230283579547811593753315602204009}{4420821183336375765514901767207799508894633414498394225} a^{14} - \frac{2013205043471562505340082503689952423465982040077609879}{4420821183336375765514901767207799508894633414498394225} a^{13} + \frac{1052137767084733791437156261353315110261861955437358463}{4420821183336375765514901767207799508894633414498394225} a^{12} + \frac{1832263679022674525336134621033588376608132311920519629}{4420821183336375765514901767207799508894633414498394225} a^{11} - \frac{561725740878736923962573985562048926254961021964223098}{4420821183336375765514901767207799508894633414498394225} a^{10} - \frac{65987260546789661883890189753496072253973997392617183}{884164236667275153102980353441559901778926682899678845} a^{9} - \frac{1694545099692942945851097438492939350431975532038475718}{4420821183336375765514901767207799508894633414498394225} a^{8} + \frac{374162783807668947839212365119156481501043578878471518}{4420821183336375765514901767207799508894633414498394225} a^{7} - \frac{2713480995546535296867911819657564899382057191948040713}{8841642366672751531029803534415599017789266828996788450} a^{6} - \frac{716213028177553229953119774761428136912462443255159801}{1768328473334550306205960706883119803557853365799357690} a^{5} - \frac{590711157965272646730995266784602695466472518358281657}{17683284733345503062059607068831198035578533657993576900} a^{4} - \frac{134790085672099681632018483763565694483553253981200161}{4420821183336375765514901767207799508894633414498394225} a^{3} - \frac{795176021767983719867882799287288072063153715478087821}{1768328473334550306205960706883119803557853365799357690} a^{2} + \frac{18573802483258195181742873373266853258940327729216199}{707331389333820122482384282753247921423141346319743076} a + \frac{109078930467453251482296518829308063297419486646469883}{707331389333820122482384282753247921423141346319743076}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1331606547.642767 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{185}) \), 4.4.6331625.1, 5.1.171125.1, 10.2.5417496640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 37 | Data not computed | ||||||