Normalized defining polynomial
\( x^{20} - 5 x^{19} - 40 x^{18} + 555 x^{17} - 1045 x^{16} - 5077 x^{15} + 40505 x^{14} - 378895 x^{13} + 2435570 x^{12} - 1764255 x^{11} - 54740221 x^{10} + 234681130 x^{9} - 425930625 x^{8} - 1679254355 x^{7} + 14514361470 x^{6} + 372998712 x^{5} - 112341446200 x^{4} + 18580850960 x^{3} + 175486910000 x^{2} - 158789506050 x + 1412257296521 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(100636306746323821134865283966064453125=5^{31}\cdot 43^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{18} - \frac{1}{12} a^{17} - \frac{1}{12} a^{16} - \frac{1}{6} a^{15} + \frac{1}{6} a^{14} - \frac{1}{12} a^{13} - \frac{1}{4} a^{12} + \frac{1}{3} a^{11} - \frac{1}{4} a^{10} - \frac{5}{12} a^{9} - \frac{1}{12} a^{7} + \frac{5}{12} a^{6} - \frac{1}{3} a^{5} + \frac{1}{12} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{6} a - \frac{5}{12}$, $\frac{1}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976} a^{19} + \frac{3193320932620953431677156420171432558141340435621542973408139831014565722560709896021956879660862483431091013297}{136524673300481896051277828575491615179842405311690262143260321337726287803751527852189990492790857499977802140497} a^{18} + \frac{16810476808750061835162686512246373266522647337447985625812350442670376852814982117443722925101763992070319559421}{91016448866987930700851885716994410119894936874460174762173547558484191869167685234793326995193904999985201426998} a^{17} + \frac{72724325331724675160557329633034515544834866453883357834288227609208636714383011334255788130959227755736286212823}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976} a^{16} + \frac{87174053280473503352205226057757969375925339897203009716658244004714601014397278615157729248558929967156246771}{9255910054269959054323920581389262046091010529606119467339682802557714427372984939131524779172261525422223873932} a^{15} + \frac{67481138839003953662060935418705920820678344232554119659671838037448148611014762910381242988862574607288266787339}{364065795467951722803407542867977640479579747497840699048694190233936767476670740939173307980775619999940805707992} a^{14} - \frac{321704067739830922802386066624711932943485922240717697874276911017751347415028056374692742785373718962102258577}{9255910054269959054323920581389262046091010529606119467339682802557714427372984939131524779172261525422223873932} a^{13} + \frac{133548938066349703176732377086350586578498133892613650591434835690875219377145460004391625926985693780599056468271}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976} a^{12} - \frac{129621282503408391809797968908357051025922886733349781885121266765403561133110915862674158122406376552440128868203}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976} a^{11} + \frac{136305219676319606049738835293713111342033102062667491911636454257589885301958463607807399783279435150582644527263}{546098693201927584205111314301966460719369621246761048573041285350905151215006111408759961971163429999911208561988} a^{10} + \frac{270062724453590841269152661702093962444427805042259893895354959521493294955911493374833132785931291987359104609461}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976} a^{9} - \frac{240318855226271201542926344238381236935464982379025607890910935872487581176761591400147636150721546877048875315341}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976} a^{8} + \frac{43217501903916769604739139073345119763371418916418122539385061284879746616996377553299001848113943173560318057275}{182032897733975861401703771433988820239789873748920349524347095116968383738335370469586653990387809999970402853996} a^{7} + \frac{29549141421462304007268123689569093907308163436263065675187274976560697326551248664192923250518165255749504797289}{364065795467951722803407542867977640479579747497840699048694190233936767476670740939173307980775619999940805707992} a^{6} - \frac{485710857333334885446433433231046148351311146010444698128417183085532100754250907396666209752319872076571020198139}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976} a^{5} + \frac{369425806517040690306524859580564236401525848082481503213022041950186142847358131841347090501388095795940289989901}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976} a^{4} + \frac{178148830437358433500508094678902417608389377328704700698484730667937725902435686203584567777654561139386502915399}{364065795467951722803407542867977640479579747497840699048694190233936767476670740939173307980775619999940805707992} a^{3} - \frac{145089176311619215515794270623209331683265550382253828585211103283994133213079711210668416833840493721485245804459}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976} a^{2} - \frac{376877797358833439423289821127626686293842458067576281306912792548162630141681624077446757443925674797382273891531}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976} a - \frac{239067869267453050948478636260660303587846653923054223805048068618204899654593922604350320981273647997794461875169}{1092197386403855168410222628603932921438739242493522097146082570701810302430012222817519923942326859999822417123976}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.231125.1, 5.1.78125.1, 10.2.30517578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $43$ | 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |