Normalized defining polynomial
\( x^{20} - 3 x^{17} - 63 x^{15} + 1011 x^{14} - 1728 x^{13} + 5107 x^{12} - 4020 x^{11} - 11221 x^{10} + 11955 x^{9} - 5805 x^{8} + 840 x^{7} + 1068 x^{6} - 1584 x^{5} - 803 x^{4} - 180 x^{3} - 23 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1002983435921998221381095607508396689=3^{10}\cdot 47^{8}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 47, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{4}{23} a^{17} + \frac{4}{23} a^{16} + \frac{11}{23} a^{15} - \frac{4}{23} a^{14} - \frac{4}{23} a^{13} + \frac{8}{23} a^{12} + \frac{8}{23} a^{11} + \frac{6}{23} a^{10} + \frac{2}{23} a^{9} + \frac{8}{23} a^{8} + \frac{3}{23} a^{7} - \frac{1}{23} a^{6} - \frac{5}{23} a^{5} + \frac{2}{23} a^{4} + \frac{2}{23} a^{3} + \frac{9}{23} a^{2} - \frac{7}{23} a + \frac{2}{23}$, $\frac{1}{47436463475610304004705221682195540303} a^{19} + \frac{864366485789711997064621432571469242}{47436463475610304004705221682195540303} a^{18} + \frac{13524533700658985266942549115297246202}{47436463475610304004705221682195540303} a^{17} + \frac{10381002064163479193489852124746525243}{47436463475610304004705221682195540303} a^{16} - \frac{3392603301368280855160396759553857151}{47436463475610304004705221682195540303} a^{15} + \frac{16947523984443880462959580271462128868}{47436463475610304004705221682195540303} a^{14} - \frac{3867608108735988955027409220110675735}{47436463475610304004705221682195540303} a^{13} - \frac{14266558282454226121236314784419644741}{47436463475610304004705221682195540303} a^{12} + \frac{19378595296742178145525286321061703065}{47436463475610304004705221682195540303} a^{11} + \frac{9856493166272408794635725944152654834}{47436463475610304004705221682195540303} a^{10} + \frac{6174137084610467675407909753782927339}{47436463475610304004705221682195540303} a^{9} - \frac{16332440920437692235613845149863488709}{47436463475610304004705221682195540303} a^{8} + \frac{11463810322766812209697681561740226950}{47436463475610304004705221682195540303} a^{7} + \frac{15982873258196072909513056722125871888}{47436463475610304004705221682195540303} a^{6} + \frac{2938003194851982681330752782325638944}{47436463475610304004705221682195540303} a^{5} - \frac{17917563505740507337483881096856643618}{47436463475610304004705221682195540303} a^{4} + \frac{13680270000373838704193112761979340081}{47436463475610304004705221682195540303} a^{3} - \frac{15179321565651082378909011144145635583}{47436463475610304004705221682195540303} a^{2} + \frac{21309755516483080942135966957373972453}{47436463475610304004705221682195540303} a - \frac{5724057706598298206810875047512540183}{47436463475610304004705221682195540303}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13453127150.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\times A_4$ (as 20T37):
| A solvable group of order 120 |
| The 16 conjugacy class representatives for $D_5\times A_4$ |
| Character table for $D_5\times A_4$ |
Intermediate fields
| 4.4.33489.1, 5.1.2209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 61 | Data not computed | ||||||