Normalized defining polynomial
\( x^{20} - 6 x^{19} - 733 x^{18} + 7741 x^{17} + 188719 x^{16} - 3182866 x^{15} - 12476856 x^{14} + 549338388 x^{13} - 2553611132 x^{12} - 31840073023 x^{11} + 427700051966 x^{10} - 1315604444133 x^{9} - 10781962773608 x^{8} + 135434048622884 x^{7} - 725209750505368 x^{6} + 2398520109440166 x^{5} - 5273329729744581 x^{4} + 7747006836663003 x^{3} - 7320465920773089 x^{2} + 4024806585247686 x - 978037072568503 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9929433642609894647025299066458363139771040828879729378027092224=2^{8}\cdot 109^{3}\cdot 33769^{5}\cdot 88024724149^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1584.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 109, 33769, 88024724149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{8} a^{15} + \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} + \frac{3}{8} a^{9} - \frac{3}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{1080608} a^{18} + \frac{1}{540304} a^{17} - \frac{12755}{135076} a^{16} + \frac{69383}{1080608} a^{15} - \frac{54945}{1080608} a^{14} - \frac{38663}{1080608} a^{13} + \frac{80955}{1080608} a^{12} + \frac{203705}{1080608} a^{11} + \frac{166163}{1080608} a^{10} + \frac{220891}{540304} a^{9} + \frac{299725}{1080608} a^{8} - \frac{280015}{1080608} a^{7} + \frac{509201}{1080608} a^{6} - \frac{224159}{1080608} a^{5} - \frac{461307}{1080608} a^{4} - \frac{483949}{1080608} a^{3} - \frac{34009}{270152} a^{2} - \frac{238107}{540304} a - \frac{325573}{1080608}$, $\frac{1}{119102083685350493686384151240664175897891972181509699481608845911445073882318292746543177408} a^{19} - \frac{5023691398160850607045590589415796796575871608481673689035431437107056635979571517175}{119102083685350493686384151240664175897891972181509699481608845911445073882318292746543177408} a^{18} - \frac{3141966497178003589385084135425377333624591509274707071792756486524510663044357442234772549}{59551041842675246843192075620332087948945986090754849740804422955722536941159146373271588704} a^{17} - \frac{12433470595199079797719697484808657399328771833596425129632606083601470382702877130128283073}{119102083685350493686384151240664175897891972181509699481608845911445073882318292746543177408} a^{16} - \frac{924912876343963920133986817397285260018870526534646521688153353626579241202223104314897337}{7443880230334405855399009452541510993618248261344356217600552869465317117644893296658948588} a^{15} + \frac{7159359881019699193665415539977534801820089289932042084407436305747945349916386967090781985}{59551041842675246843192075620332087948945986090754849740804422955722536941159146373271588704} a^{14} - \frac{14298521252665142460678124518902340769456884741213572641296230147755360216625364935929524339}{59551041842675246843192075620332087948945986090754849740804422955722536941159146373271588704} a^{13} + \frac{7151771558103697855061329349933426197334045885689923569538952263423599881574152262838560475}{59551041842675246843192075620332087948945986090754849740804422955722536941159146373271588704} a^{12} + \frac{13550972836391917146421154532581918396314541364906259821628523617479934753568924999247795025}{59551041842675246843192075620332087948945986090754849740804422955722536941159146373271588704} a^{11} + \frac{1032076181445671945332609302429536417315599716845749624817260385545059460877157727121968859}{119102083685350493686384151240664175897891972181509699481608845911445073882318292746543177408} a^{10} - \frac{38692858878134051180546761542611761867609898714805987168554752393857123989111479272313176105}{119102083685350493686384151240664175897891972181509699481608845911445073882318292746543177408} a^{9} + \frac{3255166371775944117693434053172150507323323910084251726115924427853477434372598835702362939}{29775520921337623421596037810166043974472993045377424870402211477861268470579573186635794352} a^{8} - \frac{5296535635267422473096433329022646244492767790808231887946702041032192072084199978160260713}{14887760460668811710798018905083021987236496522688712435201105738930634235289786593317897176} a^{7} + \frac{5881213100769632231326191368300454212738201218742579020899335744843901919084769208398126803}{14887760460668811710798018905083021987236496522688712435201105738930634235289786593317897176} a^{6} + \frac{12894189914414284413110685783705944443027425218768218960312614675654338738543634410447195067}{29775520921337623421596037810166043974472993045377424870402211477861268470579573186635794352} a^{5} - \frac{23010893951455675492576089394968798604476683978917000971821544511536209244825485023494299413}{59551041842675246843192075620332087948945986090754849740804422955722536941159146373271588704} a^{4} + \frac{14025391384128098889846691019224642238260834739980392059955207012898074564278991182481260529}{119102083685350493686384151240664175897891972181509699481608845911445073882318292746543177408} a^{3} - \frac{29755537723809136327603724581255463230287708293122566058907604542894550117119748498221589473}{59551041842675246843192075620332087948945986090754849740804422955722536941159146373271588704} a^{2} - \frac{47870106760253044752576257346633730970736392197955235389807082835438883871988780814780977439}{119102083685350493686384151240664175897891972181509699481608845911445073882318292746543177408} a + \frac{46054347259580712203804891606836944626906718356850647642021194895372076880509243507109725533}{119102083685350493686384151240664175897891972181509699481608845911445073882318292746543177408}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 193789765597000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n993 are not computed |
| Character table for t20n993 is not computed |
Intermediate fields
| 5.5.135076.1, 10.10.175060253699059738944016.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | $20$ | $16{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | $16{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $109$ | 109.4.3.3 | $x^{4} + 654$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109.12.0.1 | $x^{12} - x + 6$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 33769 | Data not computed | ||||||
| 88024724149 | Data not computed | ||||||