Normalized defining polynomial
\( x^{20} - 4 x^{19} - 70 x^{18} + 272 x^{17} + 1927 x^{16} - 7236 x^{15} - 27190 x^{14} + 97888 x^{13} + 215144 x^{12} - 732552 x^{11} - 977916 x^{10} + 3078868 x^{9} + 2504547 x^{8} - 7029912 x^{7} - 3351642 x^{6} + 7942856 x^{5} + 1920559 x^{4} - 3602816 x^{3} - 111054 x^{2} + 391236 x + 6247 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97756416090547441671665711234313879552=2^{55}\cdot 3^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(528=2^{4}\cdot 3\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{528}(1,·)$, $\chi_{528}(515,·)$, $\chi_{528}(179,·)$, $\chi_{528}(289,·)$, $\chi_{528}(265,·)$, $\chi_{528}(203,·)$, $\chi_{528}(323,·)$, $\chi_{528}(25,·)$, $\chi_{528}(155,·)$, $\chi_{528}(361,·)$, $\chi_{528}(97,·)$, $\chi_{528}(419,·)$, $\chi_{528}(433,·)$, $\chi_{528}(169,·)$, $\chi_{528}(49,·)$, $\chi_{528}(467,·)$, $\chi_{528}(251,·)$, $\chi_{528}(313,·)$, $\chi_{528}(59,·)$, $\chi_{528}(443,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{7667572812246861} a^{18} - \frac{49976307178983}{2555857604082287} a^{17} - \frac{987140118967208}{7667572812246861} a^{16} + \frac{283407588278473}{2555857604082287} a^{15} + \frac{213143044832530}{2555857604082287} a^{14} + \frac{1079225814519094}{7667572812246861} a^{13} + \frac{284221522590708}{2555857604082287} a^{12} + \frac{22279529154227}{7667572812246861} a^{11} + \frac{233161550722880}{7667572812246861} a^{10} - \frac{1826868411170816}{7667572812246861} a^{9} - \frac{961865513810371}{2555857604082287} a^{8} - \frac{2101808009652335}{7667572812246861} a^{7} + \frac{1032586883293381}{2555857604082287} a^{6} - \frac{748428593863327}{2555857604082287} a^{5} + \frac{467920960232212}{7667572812246861} a^{4} - \frac{84815097156069}{2555857604082287} a^{3} + \frac{1088887364701601}{2555857604082287} a^{2} - \frac{436277306991420}{2555857604082287} a - \frac{10128437185090}{2555857604082287}$, $\frac{1}{9156706613327710347585019237737174531} a^{19} + \frac{8565928665353580614}{3052235537775903449195006412579058177} a^{18} + \frac{765711734908120684621121798681220061}{9156706613327710347585019237737174531} a^{17} - \frac{138300654114939989562429414152951002}{9156706613327710347585019237737174531} a^{16} - \frac{518529189154502822714159682055288529}{9156706613327710347585019237737174531} a^{15} - \frac{953045954797331171722021700248001620}{9156706613327710347585019237737174531} a^{14} + \frac{480438393465311452266287015789825964}{3052235537775903449195006412579058177} a^{13} + \frac{6661768264948585171098190036642240}{3052235537775903449195006412579058177} a^{12} - \frac{641256236999363530185490212255333080}{9156706613327710347585019237737174531} a^{11} - \frac{174701340868185329335410728514641020}{9156706613327710347585019237737174531} a^{10} - \frac{407621417858781904000328253389413732}{3052235537775903449195006412579058177} a^{9} - \frac{3003026091404914731632494375349752517}{9156706613327710347585019237737174531} a^{8} - \frac{4388898186937770758435800767915479416}{9156706613327710347585019237737174531} a^{7} - \frac{3805186103375349929588254887156266791}{9156706613327710347585019237737174531} a^{6} - \frac{398179379435314964369791453618788119}{3052235537775903449195006412579058177} a^{5} + \frac{4101777118495935189924039078955193942}{9156706613327710347585019237737174531} a^{4} - \frac{291780151840420038945587040814465676}{9156706613327710347585019237737174531} a^{3} - \frac{2665752635868562492494437535290532079}{9156706613327710347585019237737174531} a^{2} + \frac{1106967476808666693987163688586490042}{3052235537775903449195006412579058177} a - \frac{2224939838229534484625054437571437396}{9156706613327710347585019237737174531}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2842376749290 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.18432.1, \(\Q(\zeta_{11})^+\), 10.10.7024111812608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||