Properties

Label 20.20.9676847870...6768.1
Degree $20$
Signature $[20, 0]$
Discriminant $2^{59}\cdot 11^{8}\cdot 23^{8}$
Root discriminant $70.68$
Ramified primes $2, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_4\times A_5$ (as 20T63)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![32, 0, -576, 0, 3632, 0, -10976, 0, 17842, 0, -16548, 0, 8921, 0, -2744, 0, 454, 0, -36, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 36*x^18 + 454*x^16 - 2744*x^14 + 8921*x^12 - 16548*x^10 + 17842*x^8 - 10976*x^6 + 3632*x^4 - 576*x^2 + 32)
 
gp: K = bnfinit(x^20 - 36*x^18 + 454*x^16 - 2744*x^14 + 8921*x^12 - 16548*x^10 + 17842*x^8 - 10976*x^6 + 3632*x^4 - 576*x^2 + 32, 1)
 

Normalized defining polynomial

\( x^{20} - 36 x^{18} + 454 x^{16} - 2744 x^{14} + 8921 x^{12} - 16548 x^{10} + 17842 x^{8} - 10976 x^{6} + 3632 x^{4} - 576 x^{2} + 32 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9676847870747939759856242687914016768=2^{59}\cdot 11^{8}\cdot 23^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $70.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{92} a^{14} + \frac{1}{46} a^{12} + \frac{9}{46} a^{10} + \frac{2}{23} a^{8} + \frac{29}{92} a^{6} - \frac{21}{46} a^{4} + \frac{3}{46} a^{2} - \frac{10}{23}$, $\frac{1}{92} a^{15} + \frac{1}{46} a^{13} + \frac{9}{46} a^{11} + \frac{2}{23} a^{9} + \frac{29}{92} a^{7} - \frac{21}{46} a^{5} + \frac{3}{46} a^{3} - \frac{10}{23} a$, $\frac{1}{2024} a^{16} + \frac{5}{1012} a^{14} + \frac{247}{1012} a^{12} - \frac{169}{506} a^{10} + \frac{553}{2024} a^{8} + \frac{325}{1012} a^{6} - \frac{211}{1012} a^{4} + \frac{163}{506} a^{2} - \frac{86}{253}$, $\frac{1}{4048} a^{17} - \frac{3}{1012} a^{15} + \frac{225}{2024} a^{13} + \frac{119}{506} a^{11} - \frac{1647}{4048} a^{9} - \frac{503}{1012} a^{7} - \frac{761}{2024} a^{5} - \frac{94}{253} a^{3} - \frac{229}{506} a$, $\frac{1}{4048} a^{18} - \frac{1}{2024} a^{14} - \frac{21}{253} a^{12} + \frac{185}{4048} a^{10} + \frac{3}{253} a^{8} + \frac{917}{2024} a^{6} - \frac{95}{506} a^{4} - \frac{93}{253} a^{2} - \frac{98}{253}$, $\frac{1}{8096} a^{19} + \frac{21}{4048} a^{15} + \frac{111}{506} a^{13} - \frac{3071}{8096} a^{11} - \frac{114}{253} a^{9} - \frac{469}{4048} a^{7} - \frac{73}{1012} a^{5} + \frac{353}{1012} a^{3} - \frac{104}{253} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7502898268910 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4\times A_5$ (as 20T63):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 240
The 20 conjugacy class representatives for $C_4\times A_5$
Character table for $C_4\times A_5$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 5.5.16386304.1, 10.10.2148087670243328.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ R $20$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ $20$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.11.1$x^{4} + 12 x^{2} + 2$$4$$1$$11$$C_4$$[3, 4]$
2.8.24.9$x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$$8$$1$$24$$C_4\times C_2$$[2, 3, 4]$
2.8.24.9$x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$$8$$1$$24$$C_4\times C_2$$[2, 3, 4]$
$11$11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.12.8.1$x^{12} - 33 x^{9} + 363 x^{6} - 1331 x^{3} + 117128$$3$$4$$8$$C_3 : C_4$$[\ ]_{3}^{4}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.6.4.1$x^{6} + 460 x^{3} + 181447$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
23.6.4.1$x^{6} + 460 x^{3} + 181447$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$