Normalized defining polynomial
\( x^{20} - 4 x^{19} - 42 x^{18} + 171 x^{17} + 655 x^{16} - 2851 x^{15} - 4591 x^{14} + 23573 x^{13} + 12402 x^{12} - 102044 x^{11} + 11188 x^{10} + 220411 x^{9} - 117850 x^{8} - 193976 x^{7} + 173604 x^{6} + 26193 x^{5} - 68055 x^{4} + 22346 x^{3} - 1734 x^{2} - 127 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9360572824754047547641494848050281=3^{6}\cdot 139^{2}\cdot 401^{8}\cdot 997^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 139, 401, 997$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{9} a^{16} - \frac{2}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{4}{9} a^{7} - \frac{1}{9} a^{6} - \frac{4}{9} a^{5} + \frac{2}{9} a^{4} - \frac{1}{3} a^{3} + \frac{4}{9}$, $\frac{1}{27} a^{17} - \frac{1}{27} a^{16} - \frac{1}{9} a^{15} + \frac{4}{27} a^{14} + \frac{1}{3} a^{13} - \frac{13}{27} a^{12} + \frac{1}{3} a^{11} + \frac{5}{27} a^{10} - \frac{7}{27} a^{9} - \frac{2}{27} a^{8} - \frac{2}{9} a^{7} - \frac{1}{3} a^{6} + \frac{4}{9} a^{5} - \frac{5}{27} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2} - \frac{11}{27} a - \frac{10}{27}$, $\frac{1}{81} a^{18} + \frac{1}{81} a^{17} + \frac{4}{81} a^{16} - \frac{11}{81} a^{15} + \frac{8}{81} a^{14} - \frac{22}{81} a^{13} + \frac{1}{81} a^{12} - \frac{31}{81} a^{11} + \frac{10}{27} a^{10} + \frac{29}{81} a^{9} + \frac{8}{81} a^{8} - \frac{10}{27} a^{7} - \frac{2}{27} a^{6} + \frac{1}{81} a^{5} - \frac{31}{81} a^{4} + \frac{8}{27} a^{3} - \frac{5}{81} a^{2} - \frac{23}{81} a - \frac{29}{81}$, $\frac{1}{1170132789180501277100147630097} a^{19} + \frac{133001048596671589527146891}{390044263060167092366715876699} a^{18} - \frac{737519556766546157775904478}{43338251451129676929635097411} a^{17} + \frac{3009388788800402948040388982}{130014754353389030788905292233} a^{16} - \frac{168557178703357587988260509087}{1170132789180501277100147630097} a^{15} - \frac{1589765889390950884259854199}{130014754353389030788905292233} a^{14} - \frac{64678050781385879661975252055}{1170132789180501277100147630097} a^{13} - \frac{421958477895372074546375436566}{1170132789180501277100147630097} a^{12} + \frac{124386964976078142550706665819}{1170132789180501277100147630097} a^{11} + \frac{570711008491240249183111606799}{1170132789180501277100147630097} a^{10} + \frac{5244922251719922989596817188}{43338251451129676929635097411} a^{9} + \frac{278960288739997899448249194592}{1170132789180501277100147630097} a^{8} + \frac{93981189725398656005146807124}{390044263060167092366715876699} a^{7} - \frac{24689555725750024717655358001}{68831340540029486888243978241} a^{6} - \frac{5552456468194921256770350799}{68831340540029486888243978241} a^{5} - \frac{256646889337727037149906907740}{1170132789180501277100147630097} a^{4} - \frac{43871160343656591618774886721}{1170132789180501277100147630097} a^{3} + \frac{1463322635273796564634799254}{22943780180009828962747992747} a^{2} + \frac{491228153840631496323682094}{7647926726669942987582664249} a + \frac{256371370341375879491704122518}{1170132789180501277100147630097}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39338940555.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n412 are not computed |
| Character table for t20n412 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.232014516445773.1, 10.10.97041176888553.1, 10.10.10750005928654149.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $139$ | 139.4.2.1 | $x^{4} + 417 x^{2} + 77284$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 139.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 139.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 139.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 139.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||
| 997 | Data not computed | ||||||