Normalized defining polynomial
\( x^{20} - x^{19} - 38 x^{18} + 33 x^{17} + 613 x^{16} - 448 x^{15} - 5463 x^{14} + 3223 x^{13} + 29302 x^{12} - 13187 x^{11} - 96559 x^{10} + 30691 x^{9} + 191218 x^{8} - 39237 x^{7} - 212737 x^{6} + 28344 x^{5} + 116035 x^{4} - 15587 x^{3} - 23758 x^{2} + 4783 x + 331 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(92738759037689478010716606945681=3^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(231=3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{231}(64,·)$, $\chi_{231}(1,·)$, $\chi_{231}(197,·)$, $\chi_{231}(134,·)$, $\chi_{231}(8,·)$, $\chi_{231}(139,·)$, $\chi_{231}(76,·)$, $\chi_{231}(13,·)$, $\chi_{231}(146,·)$, $\chi_{231}(20,·)$, $\chi_{231}(29,·)$, $\chi_{231}(160,·)$, $\chi_{231}(104,·)$, $\chi_{231}(169,·)$, $\chi_{231}(50,·)$, $\chi_{231}(118,·)$, $\chi_{231}(148,·)$, $\chi_{231}(188,·)$, $\chi_{231}(125,·)$, $\chi_{231}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{23} a^{11} + \frac{1}{23} a^{9} - \frac{8}{23} a^{7} + \frac{5}{23} a^{5} + \frac{6}{23} a^{3} - \frac{7}{23} a - \frac{1}{23}$, $\frac{1}{23} a^{12} + \frac{1}{23} a^{10} - \frac{8}{23} a^{8} + \frac{5}{23} a^{6} + \frac{6}{23} a^{4} - \frac{7}{23} a^{2} - \frac{1}{23} a$, $\frac{1}{23} a^{13} - \frac{9}{23} a^{9} - \frac{10}{23} a^{7} + \frac{1}{23} a^{5} + \frac{10}{23} a^{3} - \frac{1}{23} a^{2} + \frac{7}{23} a + \frac{1}{23}$, $\frac{1}{23} a^{14} - \frac{9}{23} a^{10} - \frac{10}{23} a^{8} + \frac{1}{23} a^{6} + \frac{10}{23} a^{4} - \frac{1}{23} a^{3} + \frac{7}{23} a^{2} + \frac{1}{23} a$, $\frac{1}{23} a^{15} - \frac{1}{23} a^{9} - \frac{2}{23} a^{7} + \frac{9}{23} a^{5} - \frac{1}{23} a^{4} - \frac{8}{23} a^{3} + \frac{1}{23} a^{2} + \frac{6}{23} a - \frac{9}{23}$, $\frac{1}{56143} a^{16} - \frac{948}{56143} a^{15} + \frac{231}{56143} a^{14} + \frac{1143}{56143} a^{13} + \frac{535}{56143} a^{12} + \frac{70}{56143} a^{11} - \frac{3983}{56143} a^{10} + \frac{287}{2441} a^{9} - \frac{7420}{56143} a^{8} + \frac{8467}{56143} a^{7} - \frac{16428}{56143} a^{6} - \frac{8328}{56143} a^{5} - \frac{13619}{56143} a^{4} + \frac{1816}{56143} a^{3} + \frac{21294}{56143} a^{2} + \frac{16276}{56143} a + \frac{8938}{56143}$, $\frac{1}{56143} a^{17} - \frac{185}{56143} a^{15} + \frac{441}{56143} a^{14} + \frac{295}{56143} a^{13} - \frac{478}{56143} a^{12} - \frac{1089}{56143} a^{11} + \frac{2062}{56143} a^{10} - \frac{3514}{56143} a^{9} + \frac{19033}{56143} a^{8} - \frac{13279}{56143} a^{7} + \frac{18359}{56143} a^{6} + \frac{10041}{56143} a^{5} - \frac{18075}{56143} a^{4} + \frac{7311}{56143} a^{3} + \frac{3713}{56143} a^{2} - \frac{5621}{56143} a - \frac{14133}{56143}$, $\frac{1}{56143} a^{18} + \frac{813}{56143} a^{15} - \frac{908}{56143} a^{14} + \frac{1051}{56143} a^{13} + \frac{246}{56143} a^{12} + \frac{366}{56143} a^{11} + \frac{6577}{56143} a^{10} + \frac{19718}{56143} a^{9} + \frac{2950}{56143} a^{8} + \frac{1085}{2441} a^{7} - \frac{24268}{56143} a^{6} + \frac{20572}{56143} a^{5} - \frac{7738}{56143} a^{4} - \frac{9390}{56143} a^{3} - \frac{20651}{56143} a^{2} - \frac{12826}{56143} a - \frac{11232}{56143}$, $\frac{1}{56143} a^{19} + \frac{901}{56143} a^{15} + \frac{1205}{56143} a^{14} + \frac{1008}{56143} a^{13} - \frac{91}{56143} a^{12} + \frac{928}{56143} a^{11} - \frac{20366}{56143} a^{10} - \frac{786}{56143} a^{9} - \frac{27998}{56143} a^{8} + \frac{22060}{56143} a^{7} + \frac{16943}{56143} a^{6} + \frac{18443}{56143} a^{5} - \frac{19283}{56143} a^{4} - \frac{17813}{56143} a^{3} + \frac{23339}{56143} a^{2} + \frac{6128}{56143} a + \frac{27114}{56143}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2904089575.06 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{77}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{21}, \sqrt{33})\), \(\Q(\zeta_{11})^+\), 10.10.39630026842637.1, 10.10.875463320250981.1, \(\Q(\zeta_{33})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||