Normalized defining polynomial
\( x^{20} - 5 x^{19} - 42 x^{18} + 206 x^{17} + 590 x^{16} - 3005 x^{15} - 3226 x^{14} + 19885 x^{13} + 4258 x^{12} - 64498 x^{11} + 17649 x^{10} + 100553 x^{9} - 56208 x^{8} - 68783 x^{7} + 49465 x^{6} + 19129 x^{5} - 14791 x^{4} - 2945 x^{3} + 1481 x^{2} + 290 x - 5 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90886347761592416951120000000000000=2^{16}\cdot 5^{13}\cdot 7^{6}\cdot 23^{4}\cdot 431^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 23, 431$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{25} a^{18} + \frac{1}{25} a^{17} - \frac{8}{25} a^{15} - \frac{8}{25} a^{14} + \frac{9}{25} a^{13} - \frac{2}{5} a^{12} - \frac{1}{25} a^{11} - \frac{8}{25} a^{10} - \frac{7}{25} a^{9} - \frac{6}{25} a^{8} - \frac{2}{5} a^{7} - \frac{9}{25} a^{6} + \frac{3}{25} a^{5} + \frac{9}{25} a^{4} - \frac{9}{25} a^{3} + \frac{4}{25} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{2250541316086906727549628137601775} a^{19} - \frac{33226707432380626546752403315409}{2250541316086906727549628137601775} a^{18} + \frac{218482442780726733405788233326903}{450108263217381345509925627520355} a^{17} - \frac{933190985915124084397669252733833}{2250541316086906727549628137601775} a^{16} + \frac{2266649880481156716377629282983}{20647168037494557133482826950475} a^{15} + \frac{456714024882468561653555238959939}{2250541316086906727549628137601775} a^{14} + \frac{40973768852817772039172343274364}{90021652643476269101985125504071} a^{13} + \frac{1059000174198913209875368034399849}{2250541316086906727549628137601775} a^{12} + \frac{568015334158473425551144766662227}{2250541316086906727549628137601775} a^{11} + \frac{979553413043769662547540561943823}{2250541316086906727549628137601775} a^{10} + \frac{463903714797877833208760121837114}{2250541316086906727549628137601775} a^{9} - \frac{36157234071080618995174281051966}{90021652643476269101985125504071} a^{8} - \frac{884165558848601067743198437200709}{2250541316086906727549628137601775} a^{7} + \frac{299020714117937358750042436077768}{2250541316086906727549628137601775} a^{6} + \frac{227245056307836287631148801116254}{2250541316086906727549628137601775} a^{5} + \frac{57671058613517260026839344749151}{2250541316086906727549628137601775} a^{4} + \frac{57051654746020638617511134751294}{2250541316086906727549628137601775} a^{3} - \frac{55169893141823090759843233163147}{450108263217381345509925627520355} a^{2} + \frac{140934927969856569596774248432816}{450108263217381345509925627520355} a + \frac{42658206856594826254015734760878}{90021652643476269101985125504071}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 306744996583 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 72 conjugacy class representatives for t20n369 are not computed |
| Character table for t20n369 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.396520.1, 10.10.19653513800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.12.0.1 | $x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.12.6.2 | $x^{12} + 7203 x^{4} - 16807 x^{2} + 588245$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |
| $23$ | 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 431 | Data not computed | ||||||