Normalized defining polynomial
\( x^{20} - x^{19} - 58 x^{18} + 41 x^{17} + 1325 x^{16} - 653 x^{15} - 15442 x^{14} + 5251 x^{13} + 99299 x^{12} - 23893 x^{11} - 357547 x^{10} + 66887 x^{9} + 703666 x^{8} - 120039 x^{7} - 712988 x^{6} + 132265 x^{5} + 330432 x^{4} - 70240 x^{3} - 51122 x^{2} + 11872 x - 643 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8851788427171493976819614872351019223900649=163^{10}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $140.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $163, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} + \frac{2}{23} a^{16} + \frac{8}{23} a^{15} + \frac{8}{23} a^{14} + \frac{3}{23} a^{13} + \frac{7}{23} a^{12} - \frac{5}{23} a^{11} - \frac{4}{23} a^{10} - \frac{2}{23} a^{9} - \frac{1}{23} a^{8} - \frac{2}{23} a^{7} - \frac{8}{23} a^{6} - \frac{9}{23} a^{5} + \frac{6}{23} a^{4} + \frac{9}{23} a^{3} - \frac{6}{23} a^{2} + \frac{3}{23} a - \frac{10}{23}$, $\frac{1}{391} a^{18} - \frac{7}{391} a^{17} - \frac{194}{391} a^{16} - \frac{133}{391} a^{15} - \frac{8}{17} a^{14} - \frac{66}{391} a^{13} + \frac{162}{391} a^{12} + \frac{64}{391} a^{11} - \frac{12}{391} a^{10} - \frac{6}{391} a^{9} - \frac{177}{391} a^{8} - \frac{105}{391} a^{7} + \frac{178}{391} a^{6} + \frac{110}{391} a^{5} - \frac{137}{391} a^{4} - \frac{87}{391} a^{3} + \frac{57}{391} a^{2} - \frac{152}{391} a + \frac{113}{391}$, $\frac{1}{23713274798225315022278090357926481963} a^{19} - \frac{58126070525709690404636188558951}{60647761632289808241120435698021693} a^{18} + \frac{489775576495689354830723163323410574}{23713274798225315022278090357926481963} a^{17} + \frac{4608395768582219352468515400516498450}{23713274798225315022278090357926481963} a^{16} - \frac{3700637083452095555865612112559093830}{23713274798225315022278090357926481963} a^{15} - \frac{2390462968205588940902983101841493755}{23713274798225315022278090357926481963} a^{14} + \frac{2826593644076875265489600471171431097}{23713274798225315022278090357926481963} a^{13} - \frac{10722032645209309846024281776130235742}{23713274798225315022278090357926481963} a^{12} - \frac{1447493190242291072259692940278375316}{23713274798225315022278090357926481963} a^{11} + \frac{7289904182157727836393880417329897911}{23713274798225315022278090357926481963} a^{10} - \frac{689996884972079424184930894532848236}{23713274798225315022278090357926481963} a^{9} + \frac{3422314348465763947307286337223497591}{23713274798225315022278090357926481963} a^{8} + \frac{4596702465245208425329497780915499586}{23713274798225315022278090357926481963} a^{7} - \frac{1828712927684826950884444002080283323}{23713274798225315022278090357926481963} a^{6} - \frac{5484105705889048260747655884977652810}{23713274798225315022278090357926481963} a^{5} - \frac{775604318534385448400527143992718371}{23713274798225315022278090357926481963} a^{4} - \frac{8390087153387331895876904596558911965}{23713274798225315022278090357926481963} a^{3} + \frac{8626274445582881048354420962005254899}{23713274798225315022278090357926481963} a^{2} - \frac{4898614565688869444234640303653321335}{23713274798225315022278090357926481963} a + \frac{8882198080006670897158936569539619276}{23713274798225315022278090357926481963}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1694909520630000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\times A_4$ (as 20T37):
| A solvable group of order 120 |
| The 16 conjugacy class representatives for $D_5\times A_4$ |
| Character table for $D_5\times A_4$ |
Intermediate fields
| 4.4.26569.1, 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | $15{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | $15{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 163 | Data not computed | ||||||
| 401 | Data not computed | ||||||