Normalized defining polynomial
\( x^{20} - 3 x^{19} - 51 x^{18} + 194 x^{17} + 849 x^{16} - 4418 x^{15} - 3399 x^{14} + 42132 x^{13} - 35361 x^{12} - 141025 x^{11} + 274398 x^{10} - 8557 x^{9} - 306339 x^{8} + 148442 x^{7} + 113851 x^{6} - 79568 x^{5} - 14553 x^{4} + 12406 x^{3} + 1453 x^{2} - 659 x - 97 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(880521832126194804801243035642266919557=19^{5}\cdot 103^{5}\cdot 431^{4}\cdot 971^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 103, 431, 971$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{1569163274719481794312258620536} a^{19} + \frac{34557339628271135905951830307}{392290818679870448578064655134} a^{18} - \frac{388777792628600354017622952535}{1569163274719481794312258620536} a^{17} - \frac{204798817994221359169997843951}{1569163274719481794312258620536} a^{16} + \frac{25620429812196983441325500537}{392290818679870448578064655134} a^{15} + \frac{183767273199435444643959480267}{784581637359740897156129310268} a^{14} + \frac{361935108926575624210842070903}{1569163274719481794312258620536} a^{13} + \frac{584985911369174131101658364421}{1569163274719481794312258620536} a^{12} + \frac{86455128859978500783159490691}{784581637359740897156129310268} a^{11} + \frac{610972137115872869222819831173}{1569163274719481794312258620536} a^{10} + \frac{617554225096431938751185357617}{1569163274719481794312258620536} a^{9} - \frac{236007209061720888583102917369}{784581637359740897156129310268} a^{8} - \frac{746842147465131730744177785093}{1569163274719481794312258620536} a^{7} - \frac{443497307310783011952400004185}{1569163274719481794312258620536} a^{6} - \frac{41991708624252664996874339934}{196145409339935224289032327567} a^{5} + \frac{109432909615498977474649327595}{392290818679870448578064655134} a^{4} + \frac{329964311756422126949867500443}{1569163274719481794312258620536} a^{3} + \frac{498577940992065245574555361103}{1569163274719481794312258620536} a^{2} - \frac{310416873075070360370182316735}{784581637359740897156129310268} a - \frac{2850736338618707223772172449}{16176940976489503034146996088}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16059573679500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 15000 |
| The 190 conjugacy class representatives for t20n462 are not computed |
| Character table for t20n462 is not computed |
Intermediate fields
| 4.4.1957.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | $15{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | $15{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | $20$ | $15{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.10.0.1 | $x^{10} + x^{2} - 2 x + 14$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $103$ | 103.10.5.2 | $x^{10} - 112550881 x^{2} + 208669333374$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 103.10.0.1 | $x^{10} - x + 12$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 431 | Data not computed | ||||||
| 971 | Data not computed | ||||||