Normalized defining polynomial
\( x^{20} - 84 x^{18} - 8 x^{17} + 2529 x^{16} - 800 x^{15} - 36852 x^{14} + 32222 x^{13} + 265203 x^{12} - 384760 x^{11} - 789498 x^{10} + 1688544 x^{9} + 475396 x^{8} - 2699058 x^{7} + 1031692 x^{6} + 1263226 x^{5} - 1003929 x^{4} + 81360 x^{3} + 87522 x^{2} - 13042 x - 1367 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(830861029216363101082988400989215653888=2^{30}\cdot 3^{10}\cdot 7^{8}\cdot 11^{8}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{4}{13} a^{15} - \frac{4}{13} a^{14} + \frac{3}{13} a^{12} - \frac{2}{13} a^{11} + \frac{4}{13} a^{10} + \frac{6}{13} a^{9} - \frac{3}{13} a^{8} - \frac{3}{13} a^{7} - \frac{4}{13} a^{6} + \frac{2}{13} a^{5} + \frac{1}{13} a^{4} + \frac{5}{13} a^{3} - \frac{5}{13} a^{2} - \frac{5}{13}$, $\frac{1}{13} a^{17} + \frac{6}{13} a^{15} + \frac{3}{13} a^{14} + \frac{3}{13} a^{13} - \frac{1}{13} a^{12} - \frac{1}{13} a^{11} + \frac{3}{13} a^{10} - \frac{1}{13} a^{9} - \frac{4}{13} a^{8} - \frac{5}{13} a^{7} + \frac{5}{13} a^{6} + \frac{6}{13} a^{5} + \frac{1}{13} a^{4} + \frac{1}{13} a^{3} - \frac{6}{13} a^{2} - \frac{5}{13} a - \frac{6}{13}$, $\frac{1}{169} a^{18} - \frac{3}{169} a^{17} + \frac{4}{169} a^{16} - \frac{36}{169} a^{15} + \frac{28}{169} a^{14} - \frac{75}{169} a^{13} - \frac{82}{169} a^{12} - \frac{3}{169} a^{11} - \frac{44}{169} a^{10} - \frac{6}{13} a^{8} - \frac{5}{13} a^{7} + \frac{64}{169} a^{6} + \frac{18}{169} a^{5} + \frac{9}{169} a^{4} + \frac{33}{169} a^{3} + \frac{36}{169} a^{2} - \frac{4}{169} a + \frac{80}{169}$, $\frac{1}{47969149565113489924971685721379742554258031} a^{19} - \frac{48649914797827254108426130735264239468642}{47969149565113489924971685721379742554258031} a^{18} - \frac{846618814436257282994351887346070261807373}{47969149565113489924971685721379742554258031} a^{17} + \frac{890284537331572492311500342881769991634507}{47969149565113489924971685721379742554258031} a^{16} - \frac{1650327768899642012006734651341313023278744}{3689934581931806917305514286259980196481387} a^{15} + \frac{2119234694370910804687091682570180921756548}{47969149565113489924971685721379742554258031} a^{14} - \frac{3091000535734008686140146181226141171497140}{47969149565113489924971685721379742554258031} a^{13} + \frac{8326949427365077110948926069896426553894014}{47969149565113489924971685721379742554258031} a^{12} - \frac{17070546808241526131063795269339489893883682}{47969149565113489924971685721379742554258031} a^{11} + \frac{8364904132745346252408976192233370227134043}{47969149565113489924971685721379742554258031} a^{10} - \frac{1091302721468811448269981109304756644572257}{3689934581931806917305514286259980196481387} a^{9} - \frac{1045201402249978685581413699871949745126249}{3689934581931806917305514286259980196481387} a^{8} + \frac{19252233785243950053464625993573958751398404}{47969149565113489924971685721379742554258031} a^{7} - \frac{12008346466619791933023783082935266877965114}{47969149565113489924971685721379742554258031} a^{6} - \frac{18417959063574499904412269113116105831042284}{47969149565113489924971685721379742554258031} a^{5} - \frac{13040311244611611981481100367447891555828963}{47969149565113489924971685721379742554258031} a^{4} + \frac{10639031559343668334625361793863566037139568}{47969149565113489924971685721379742554258031} a^{3} - \frac{941400271162041944939406110806762379603897}{47969149565113489924971685721379742554258031} a^{2} - \frac{19276347525005569482255007048786332047112051}{47969149565113489924971685721379742554258031} a + \frac{5645490846315568642083085491234778242007641}{47969149565113489924971685721379742554258031}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18356338138900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{10}^2:C_2^2$ (as 20T106):
| A solvable group of order 400 |
| The 46 conjugacy class representatives for $C_{10}^2:C_2^2$ |
| Character table for $C_{10}^2:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.7488.1, 10.10.249828821987576832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | R | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.5.4.2 | $x^{5} - 891$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.2 | $x^{5} - 891$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |