Normalized defining polynomial
\( x^{20} - 2 x^{19} - 70 x^{18} + 130 x^{17} + 1884 x^{16} - 3176 x^{15} - 26030 x^{14} + 38676 x^{13} + 204088 x^{12} - 258790 x^{11} - 929382 x^{10} + 972558 x^{9} + 2376321 x^{8} - 1981016 x^{7} - 3070474 x^{6} + 1939996 x^{5} + 1575260 x^{4} - 643258 x^{3} - 248460 x^{2} + 15576 x + 6157 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(830861029216363101082988400989215653888=2^{30}\cdot 3^{10}\cdot 7^{8}\cdot 11^{8}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} + \frac{5}{13} a^{16} - \frac{4}{13} a^{15} - \frac{6}{13} a^{13} - \frac{6}{13} a^{12} + \frac{2}{13} a^{11} + \frac{6}{13} a^{10} - \frac{4}{13} a^{9} - \frac{4}{13} a^{8} - \frac{3}{13} a^{7} + \frac{1}{13} a^{6} + \frac{5}{13} a^{5} - \frac{6}{13} a^{4} - \frac{5}{13} a^{3} - \frac{5}{13} a^{2} - \frac{2}{13} a + \frac{6}{13}$, $\frac{1}{13} a^{18} - \frac{3}{13} a^{16} - \frac{6}{13} a^{15} - \frac{6}{13} a^{14} - \frac{2}{13} a^{13} + \frac{6}{13} a^{12} - \frac{4}{13} a^{11} + \frac{5}{13} a^{10} + \frac{3}{13} a^{9} + \frac{4}{13} a^{8} + \frac{3}{13} a^{7} - \frac{5}{13} a^{5} - \frac{1}{13} a^{4} - \frac{6}{13} a^{3} - \frac{3}{13} a^{2} + \frac{3}{13} a - \frac{4}{13}$, $\frac{1}{904043278151745018266694781643477704124895646267} a^{19} - \frac{5195056447633498700426827329107821787791612867}{904043278151745018266694781643477704124895646267} a^{18} - \frac{782168831860845836435338594417462981453510903}{39306229484858479055073686158412074092386767229} a^{17} + \frac{196325035090802268566871175112559550277839528380}{904043278151745018266694781643477704124895646267} a^{16} + \frac{360049733146611993602778337295700492697357196426}{904043278151745018266694781643477704124895646267} a^{15} - \frac{402319290057105477311805203946795278384274372363}{904043278151745018266694781643477704124895646267} a^{14} + \frac{14236282008705421804993120420349607504050285879}{69541790627057309097438060126421361855761203559} a^{13} + \frac{296169805111071347065485842848357020134304855869}{904043278151745018266694781643477704124895646267} a^{12} + \frac{289498414003180111090698196224067162654891343783}{904043278151745018266694781643477704124895646267} a^{11} + \frac{67925442839010687319918670264623982435618523448}{904043278151745018266694781643477704124895646267} a^{10} - \frac{32790469232295184529964515558576047572139373872}{69541790627057309097438060126421361855761203559} a^{9} - \frac{436377574663661994719468278753103678650023827901}{904043278151745018266694781643477704124895646267} a^{8} - \frac{68639879170688213164413340272877534553699613882}{904043278151745018266694781643477704124895646267} a^{7} + \frac{5483629854560795968782790307528401441863985455}{904043278151745018266694781643477704124895646267} a^{6} + \frac{29532784423189839996052995943787231401425640229}{904043278151745018266694781643477704124895646267} a^{5} - \frac{69132323615808412901887244203433227348739623621}{904043278151745018266694781643477704124895646267} a^{4} + \frac{152819959170873390087583373905666905259857824713}{904043278151745018266694781643477704124895646267} a^{3} - \frac{86676868633113790247647969268439980363793544187}{904043278151745018266694781643477704124895646267} a^{2} - \frac{154132755467317830314328373862526712820440354006}{904043278151745018266694781643477704124895646267} a + \frac{21120922655675361457341410563639154100434553}{146831781411685076866443849544173737879632231}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16168836073800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{10}^2:C_2^2$ (as 20T106):
| A solvable group of order 400 |
| The 46 conjugacy class representatives for $C_{10}^2:C_2^2$ |
| Character table for $C_{10}^2:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.7488.1, 10.10.249828821987576832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | R | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.10.8.2 | $x^{10} + 143 x^{5} + 5929$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |