Properties

Label 20.20.8280290523...3125.1
Degree $20$
Signature $[20, 0]$
Discriminant $3^{10}\cdot 5^{15}\cdot 11^{16}$
Root discriminant $39.44$
Ramified primes $3, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -21, -468, -978, 4671, 9222, -18180, -26929, 34487, 31502, -32674, -17268, 16062, 4764, -4199, -664, 579, 43, -39, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 39*x^18 + 43*x^17 + 579*x^16 - 664*x^15 - 4199*x^14 + 4764*x^13 + 16062*x^12 - 17268*x^11 - 32674*x^10 + 31502*x^9 + 34487*x^8 - 26929*x^7 - 18180*x^6 + 9222*x^5 + 4671*x^4 - 978*x^3 - 468*x^2 - 21*x + 1)
 
gp: K = bnfinit(x^20 - x^19 - 39*x^18 + 43*x^17 + 579*x^16 - 664*x^15 - 4199*x^14 + 4764*x^13 + 16062*x^12 - 17268*x^11 - 32674*x^10 + 31502*x^9 + 34487*x^8 - 26929*x^7 - 18180*x^6 + 9222*x^5 + 4671*x^4 - 978*x^3 - 468*x^2 - 21*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - 39 x^{18} + 43 x^{17} + 579 x^{16} - 664 x^{15} - 4199 x^{14} + 4764 x^{13} + 16062 x^{12} - 17268 x^{11} - 32674 x^{10} + 31502 x^{9} + 34487 x^{8} - 26929 x^{7} - 18180 x^{6} + 9222 x^{5} + 4671 x^{4} - 978 x^{3} - 468 x^{2} - 21 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(82802905234194108120391845703125=3^{10}\cdot 5^{15}\cdot 11^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.44$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(165=3\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{165}(64,·)$, $\chi_{165}(1,·)$, $\chi_{165}(4,·)$, $\chi_{165}(136,·)$, $\chi_{165}(137,·)$, $\chi_{165}(16,·)$, $\chi_{165}(23,·)$, $\chi_{165}(152,·)$, $\chi_{165}(91,·)$, $\chi_{165}(92,·)$, $\chi_{165}(158,·)$, $\chi_{165}(31,·)$, $\chi_{165}(34,·)$, $\chi_{165}(38,·)$, $\chi_{165}(49,·)$, $\chi_{165}(47,·)$, $\chi_{165}(113,·)$, $\chi_{165}(53,·)$, $\chi_{165}(122,·)$, $\chi_{165}(124,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2082669587034804529733814536431} a^{19} - \frac{631040415238238223427867771801}{2082669587034804529733814536431} a^{18} + \frac{152987828715493742049781257249}{2082669587034804529733814536431} a^{17} - \frac{990984620086852314893651586843}{2082669587034804529733814536431} a^{16} - \frac{392771049749764876705225201479}{2082669587034804529733814536431} a^{15} + \frac{450981209062148196235006064378}{2082669587034804529733814536431} a^{14} - \frac{694079443849693900768343536659}{2082669587034804529733814536431} a^{13} + \frac{325365515022304479260318025552}{2082669587034804529733814536431} a^{12} + \frac{232905747903421311913236205052}{2082669587034804529733814536431} a^{11} - \frac{3075027522880656288175878035}{2082669587034804529733814536431} a^{10} - \frac{235570452199100968135958356687}{2082669587034804529733814536431} a^{9} + \frac{133303929826186272482153815804}{2082669587034804529733814536431} a^{8} - \frac{583007030297928898348119760805}{2082669587034804529733814536431} a^{7} + \frac{76782440715765804847410656882}{2082669587034804529733814536431} a^{6} + \frac{697600173347618897379107298608}{2082669587034804529733814536431} a^{5} + \frac{1017821131311634053674797787704}{2082669587034804529733814536431} a^{4} - \frac{378754573027980994274253765017}{2082669587034804529733814536431} a^{3} - \frac{392356911223898611657593156114}{2082669587034804529733814536431} a^{2} - \frac{60337573671184055476426726308}{2082669587034804529733814536431} a + \frac{659223819107552474364194493169}{2082669587034804529733814536431}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2427056473.64 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ R R $20$ R $20$ $20$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ $20$ $20$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$