Properties

Label 20.20.8230707706...8125.1
Degree $20$
Signature $[20, 0]$
Discriminant $5^{13}\cdot 19^{10}\cdot 43^{8}\cdot 97^{2}$
Root discriminant $88.26$
Ramified primes $5, 19, 43, 97$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T426

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -486, 14573, -131936, 355693, -10130, -1231009, 1365776, 659006, -1898411, 742976, 534768, -534817, 121115, 27509, -15528, 790, 546, -68, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 - 68*x^18 + 546*x^17 + 790*x^16 - 15528*x^15 + 27509*x^14 + 121115*x^13 - 534817*x^12 + 534768*x^11 + 742976*x^10 - 1898411*x^9 + 659006*x^8 + 1365776*x^7 - 1231009*x^6 - 10130*x^5 + 355693*x^4 - 131936*x^3 + 14573*x^2 - 486*x - 1)
 
gp: K = bnfinit(x^20 - 6*x^19 - 68*x^18 + 546*x^17 + 790*x^16 - 15528*x^15 + 27509*x^14 + 121115*x^13 - 534817*x^12 + 534768*x^11 + 742976*x^10 - 1898411*x^9 + 659006*x^8 + 1365776*x^7 - 1231009*x^6 - 10130*x^5 + 355693*x^4 - 131936*x^3 + 14573*x^2 - 486*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} - 68 x^{18} + 546 x^{17} + 790 x^{16} - 15528 x^{15} + 27509 x^{14} + 121115 x^{13} - 534817 x^{12} + 534768 x^{11} + 742976 x^{10} - 1898411 x^{9} + 659006 x^{8} + 1365776 x^{7} - 1231009 x^{6} - 10130 x^{5} + 355693 x^{4} - 131936 x^{3} + 14573 x^{2} - 486 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(823070770673063523939149301768798828125=5^{13}\cdot 19^{10}\cdot 43^{8}\cdot 97^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $88.26$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 43, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} + \frac{1}{19} a^{17} + \frac{9}{19} a^{16} - \frac{5}{19} a^{15} - \frac{2}{19} a^{14} - \frac{8}{19} a^{13} - \frac{9}{19} a^{12} - \frac{6}{19} a^{11} + \frac{7}{19} a^{10} + \frac{3}{19} a^{9} - \frac{2}{19} a^{8} - \frac{1}{19} a^{7} - \frac{4}{19} a^{6} - \frac{4}{19} a^{5} - \frac{3}{19} a^{4} - \frac{7}{19} a^{2} + \frac{8}{19} a + \frac{3}{19}$, $\frac{1}{2132891971563230561648130027679748150807111} a^{19} + \frac{4562756719508398848306472800350181495599}{2132891971563230561648130027679748150807111} a^{18} - \frac{17915413861060110268786297382904822913000}{2132891971563230561648130027679748150807111} a^{17} - \frac{356573279981429835869491760049074086592310}{2132891971563230561648130027679748150807111} a^{16} - \frac{883274757752298906938885382953923587581425}{2132891971563230561648130027679748150807111} a^{15} + \frac{680212011097803585095064818659250448203777}{2132891971563230561648130027679748150807111} a^{14} - \frac{12457953626634208571128711435121006852418}{304698853080461508806875718239964021543873} a^{13} + \frac{36248904693139761156784268013643429603748}{112257472187538450613059475141039376358269} a^{12} - \frac{724554380929395811503309921209242311875880}{2132891971563230561648130027679748150807111} a^{11} - \frac{20721347050067730782032956834519333783852}{2132891971563230561648130027679748150807111} a^{10} - \frac{372867334982410788967202602980541690147301}{2132891971563230561648130027679748150807111} a^{9} + \frac{82923923492969130479338532443216635741726}{304698853080461508806875718239964021543873} a^{8} - \frac{1056871503040732324591656184207068894571519}{2132891971563230561648130027679748150807111} a^{7} - \frac{597510417442903800454415817414048642113858}{2132891971563230561648130027679748150807111} a^{6} - \frac{840761409938123407777402516012245123659305}{2132891971563230561648130027679748150807111} a^{5} - \frac{1027536921212471868975967457766300885559655}{2132891971563230561648130027679748150807111} a^{4} - \frac{805320078840386508739884915928271568117534}{2132891971563230561648130027679748150807111} a^{3} + \frac{55612074302445575219506201042396239277038}{112257472187538450613059475141039376358269} a^{2} + \frac{668257575008766862640854812792392781779753}{2132891971563230561648130027679748150807111} a - \frac{249650089109831832242825378476298395389467}{2132891971563230561648130027679748150807111}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19253819955500 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T426:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 10240
The 100 conjugacy class representatives for t20n426 are not computed
Character table for t20n426 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.667489.1, 10.10.1392317391003125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ $20$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ $20$ R $20$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ R $20$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.3.2$x^{4} - 19$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.3.2$x^{4} - 19$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$43$43.4.0.1$x^{4} - x + 20$$1$$4$$0$$C_4$$[\ ]^{4}$
43.8.4.1$x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
43.8.4.1$x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$97$97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.2.2$x^{4} - 97 x^{2} + 47045$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$