Normalized defining polynomial
\( x^{20} - 40 x^{18} + 680 x^{16} - 11 x^{15} - 6400 x^{14} + 330 x^{13} + 36400 x^{12} - 3960 x^{11} - 128039 x^{10} + 24200 x^{9} + 272780 x^{8} - 79200 x^{7} - 325460 x^{6} + 132429 x^{5} + 175600 x^{4} - 92290 x^{3} - 15600 x^{2} + 8580 x + 401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(822111175511963665485382080078125=5^{35}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(175=5^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{175}(64,·)$, $\chi_{175}(1,·)$, $\chi_{175}(132,·)$, $\chi_{175}(134,·)$, $\chi_{175}(71,·)$, $\chi_{175}(13,·)$, $\chi_{175}(141,·)$, $\chi_{175}(83,·)$, $\chi_{175}(153,·)$, $\chi_{175}(27,·)$, $\chi_{175}(29,·)$, $\chi_{175}(97,·)$, $\chi_{175}(99,·)$, $\chi_{175}(36,·)$, $\chi_{175}(167,·)$, $\chi_{175}(169,·)$, $\chi_{175}(106,·)$, $\chi_{175}(48,·)$, $\chi_{175}(118,·)$, $\chi_{175}(62,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{4049} a^{13} + \frac{90}{4049} a^{12} - \frac{26}{4049} a^{11} + \frac{1889}{4049} a^{10} + \frac{260}{4049} a^{9} - \frac{805}{4049} a^{8} - \frac{1248}{4049} a^{7} + \frac{340}{4049} a^{6} - \frac{1137}{4049} a^{5} + \frac{1387}{4049} a^{4} + \frac{1137}{4049} a^{3} + \frac{1594}{4049} a^{2} + \frac{832}{4049} a - \frac{627}{4049}$, $\frac{1}{4049} a^{14} - \frac{28}{4049} a^{12} + \frac{180}{4049} a^{11} + \frac{308}{4049} a^{10} + \frac{89}{4049} a^{9} - \frac{1680}{4049} a^{8} - \frac{712}{4049} a^{7} + \frac{655}{4049} a^{6} - \frac{1557}{4049} a^{5} + \frac{1826}{4049} a^{4} + \frac{489}{4049} a^{3} - \frac{913}{4049} a^{2} + \frac{1424}{4049} a - \frac{256}{4049}$, $\frac{1}{4049} a^{15} - \frac{1349}{4049} a^{12} - \frac{420}{4049} a^{11} + \frac{344}{4049} a^{10} + \frac{1551}{4049} a^{9} + \frac{1042}{4049} a^{8} - \frac{1897}{4049} a^{7} - \frac{135}{4049} a^{6} - \frac{1667}{4049} a^{5} - \frac{1165}{4049} a^{4} - \frac{1469}{4049} a^{3} + \frac{1517}{4049} a^{2} - \frac{1254}{4049} a - \frac{1360}{4049}$, $\frac{1}{4049} a^{16} - \frac{480}{4049} a^{12} + \frac{1711}{4049} a^{11} - \frac{1058}{4049} a^{10} - \frac{481}{4049} a^{9} + \frac{1339}{4049} a^{8} + \frac{697}{4049} a^{7} - \frac{544}{4049} a^{6} - \frac{407}{4049} a^{5} - \frac{1044}{4049} a^{4} + \frac{759}{4049} a^{3} - \frac{967}{4049} a^{2} - \frac{565}{4049} a + \frac{418}{4049}$, $\frac{1}{4049} a^{17} + \frac{372}{4049} a^{12} - \frac{1391}{4049} a^{11} - \frac{737}{4049} a^{10} + \frac{620}{4049} a^{9} - \frac{1048}{4049} a^{8} - \frac{332}{4049} a^{7} + \frac{833}{4049} a^{6} - \frac{189}{4049} a^{5} - \frac{1566}{4049} a^{4} - \frac{1822}{4049} a^{3} - \frac{706}{4049} a^{2} - \frac{1073}{4049} a - \frac{1334}{4049}$, $\frac{1}{4049} a^{18} + \frac{1570}{4049} a^{12} + \frac{837}{4049} a^{11} - \frac{1611}{4049} a^{10} - \frac{592}{4049} a^{9} - \frac{498}{4049} a^{8} - \frac{546}{4049} a^{7} - \frac{1150}{4049} a^{6} + \frac{302}{4049} a^{5} + \frac{486}{4049} a^{4} + \frac{1475}{4049} a^{3} + \frac{1162}{4049} a^{2} + \frac{935}{4049} a - \frac{1598}{4049}$, $\frac{1}{4049} a^{19} + \frac{1252}{4049} a^{12} - \frac{1281}{4049} a^{11} + \frac{1595}{4049} a^{10} + \frac{251}{4049} a^{9} + \frac{16}{4049} a^{8} - \frac{1506}{4049} a^{7} + \frac{970}{4049} a^{6} - \frac{33}{4049} a^{5} - \frac{1802}{4049} a^{4} + \frac{1681}{4049} a^{3} + \frac{637}{4049} a^{2} - \frac{11}{4049} a + \frac{483}{4049}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9489514790.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.6125.1, 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |