Normalized defining polynomial
\( x^{20} - 283 x^{18} + 30002 x^{16} - 1524616 x^{14} + 40234241 x^{12} - 571963368 x^{10} + 4239133720 x^{8} - 13873345570 x^{6} + 9682058280 x^{4} - 983215875 x^{2} + 25878125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81219966925743319869894819510534963457280000000000000=2^{20}\cdot 5^{13}\cdot 6029^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $442.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{14} + \frac{2}{5} a^{12} - \frac{1}{5} a^{10} + \frac{1}{5} a^{8} + \frac{2}{5} a^{6}$, $\frac{1}{325} a^{17} - \frac{133}{325} a^{15} - \frac{23}{325} a^{13} + \frac{84}{325} a^{11} + \frac{141}{325} a^{9} - \frac{68}{325} a^{7} - \frac{1}{65} a^{5} - \frac{29}{65} a^{3} - \frac{24}{65} a$, $\frac{1}{72205180584885355796690638053204021625073375} a^{18} - \frac{2203360007988010278527241566742655619972233}{72205180584885355796690638053204021625073375} a^{16} + \frac{12757622738425502897508974626842838984333602}{72205180584885355796690638053204021625073375} a^{14} - \frac{994614083112382591993005075054329809776141}{72205180584885355796690638053204021625073375} a^{12} + \frac{8109291633205731040590822040339244863557191}{72205180584885355796690638053204021625073375} a^{10} + \frac{19350921590446018009401746979354437128242807}{72205180584885355796690638053204021625073375} a^{8} - \frac{6839436166505369319141423655956465088599086}{14441036116977071159338127610640804325014675} a^{6} - \frac{2378870321698165104161231300785522994985139}{14441036116977071159338127610640804325014675} a^{4} - \frac{3656395447837024332273116892722971397919494}{14441036116977071159338127610640804325014675} a^{2} - \frac{373242452421772388808726665253271282386}{3417996714077413292151036120861728834323}$, $\frac{1}{2527181320470987452884172331862140756877568125} a^{19} + \frac{18337856162308361370931911817468122337717}{2527181320470987452884172331862140756877568125} a^{17} + \frac{145280722476338504018783340990859824358347286}{361025902924426778983453190266020108125366875} a^{15} + \frac{886573682644939914047327299609715105243048884}{2527181320470987452884172331862140756877568125} a^{13} + \frac{50321551052061785198656118132981595967446241}{2527181320470987452884172331862140756877568125} a^{11} - \frac{894877749507410102308696639448136482832301618}{2527181320470987452884172331862140756877568125} a^{9} + \frac{136237906284775151090300948363315503916161694}{505436264094197490576834466372428151375513625} a^{7} - \frac{27476291100935772687922151959668014708926552}{72205180584885355796690638053204021625073375} a^{5} + \frac{206294052714368087138104276831208722250370781}{505436264094197490576834466372428151375513625} a^{3} + \frac{364291493238877594497798454404774187435866}{1555188504905223047928721434992086619616965} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 403285850329000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 480 |
| The 19 conjugacy class representatives for $C_4:S_5$ |
| Character table for $C_4:S_5$ |
Intermediate fields
| \(\Q(\sqrt{6029}) \), 4.4.2907907280.1, 5.5.753625.1, 10.10.124464771269983455453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 6029 | Data not computed | ||||||